Peridynamics: A Nonlocal Continuum Theory

  • Etienne Emmrich
  • Richard B. Lehoucq
  • Dimitri Puhst
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 89)

Abstract

The peridynamic theory is a nonlocal theory of continuum mechanics based on an integro-differential equation without spatial derivatives, which can be easily applied in the vicinity of cracks, where discontinuities in the displacement field occur. In this paper we give a survey on important analytical and numerical results and applications of the peridynamic theory.

Keywords

Peridynamics Nonlocal model Continuum mechanics 

Notes

Acknowledgements

The authors are grateful to Stephan Kusche and Henrik Büsing for the numerical simulation of the Kalthoff–Winkler experiment (see Fig. 3).

References

  1. 1.
    A. Agwai, I. Guven, E. Madenci, Peridynamic theory for impact damage prediction and propagation in electronic packages due to drop, in Proceedings of the 58th Electronic Components and Technology Conference, Lake Buena Vista, Florida (2008), pp. 1048–1053Google Scholar
  2. 2.
    A. Agwai, I. Guven, E. Madenci, Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171(1), 65–78 (2011)CrossRefGoogle Scholar
  3. 3.
    J.B. Aidun, S.A. Silling, Accurate prediction of dynamic fracture with peridynamics, in Joint US-Russian Conference on Advances in Materials Science, Prague (2009)Google Scholar
  4. 4.
    B. Alali, R. Lipton, Multiscale dynamics of heterogeneous media in the peridynamic formulation. J. Elast. 106(1), 71–103 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    B.S. Altan, Uniqueness of initial-boundary value problems in nonlocal elasticity. Int. J. Solid Struct. 25(11), 1271–1278 (1989)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    B.S. Altan, Uniqueness in nonlocal thermoelasticity. J. Therm. Stresses 14, 121–128 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Arndt, M. Griebel, Derivation of higher order gradient continuum models from atomistic models for crystalline solids. Multiscale Model. Simul. 4(2), 531–562 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    A. Askari, J. Xu, S.A. Silling, Peridynamic analysis of damage and failure in composites, in 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, AIAA-2006-88 (2006)Google Scholar
  9. 9.
    Z.P. Bažant, M. Jirásek, Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128(11), 1119–1149 (2002)CrossRefGoogle Scholar
  10. 10.
    F. Bobaru, Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofiber networks: a peridynamic approach. Model. Simul. Mater. Sci. 15, 397–417 (2007)CrossRefGoogle Scholar
  11. 11.
    F. Bobaru, Y.D. Ha, Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162(1–2), 229–244 (2010)MATHGoogle Scholar
  12. 12.
    F. Bobaru, H. Jiang, S.A. Silling, Peridynamic fracture and damage modeling of membranes and nanofiber networks, in Proceedings of the XI International Conference on Fracture, Turin, vol. 5748 (2005), pp. 1–6Google Scholar
  13. 13.
    H. Büsing, Multivariate Integration und Anwendungen in der Peridynamik, Diploma thesis, TU Berlin, Institut für Mathematik, 2008Google Scholar
  14. 14.
    X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Method Appl. Mech. Eng. 200(9–12), 1237–1250 (2011)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Y. Chen, J.D. Lee, A. Eskandarian, Dynamic meshless method applied to nonlocal crack problems. Theor. Appl. Fract. Mech. 38, 293–300 (2002)MATHCrossRefGoogle Scholar
  16. 16.
    Y. Chen, J.D. Lee, A. Eskandarian, Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solid Struct. 41(8), 2085–2097 (2004)MATHCrossRefGoogle Scholar
  17. 17.
    Q. Du, K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory. M2AN Math. Mod. Numer. Anal. 45(2), 217–234 (2011)Google Scholar
  18. 18.
    Q. Du, M. Gunzburger, R.B. Lehoucq, K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Technical report 2010-8353J, Sandia National Laboratories, 2010Google Scholar
  19. 19.
    Q. Du, M. Gunzburger, R.B. Lehoucq, K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints. Technical report 2011-3168J, Sandia National Laboratories, 2011. Accepted for publication in SIAM reviewGoogle Scholar
  20. 20.
    Q. Du, M. Gunzburger, R.B. Lehoucq, K. Zhou, Application of a nonlocal vector calculus to the analysis of linear peridynamic materials. Technical report 2011-3870J, Sandia National Laboratories, 2011Google Scholar
  21. 21.
    Q. Du, J.R. Kamm, R.B. Lehoucq, M.L. Parks, A new approach for a nonlocal, nonlinear conservation law. SIAM J. Appl. Math. 72(1), 464–487 (2012)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    N. Duruk, H.A. Erbay, A. Erkip, Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity. Nonlinearity 23, 107–118 (2010)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    E. Emmrich, O. Weckner, The peridynamic equation of motion in non-local elasticity theory, in III European Conference on Computational Mechanics. Solids, Structures and Coupled Problems in Engineering, ed. by C.A. Mota Soares et al. (Springer, Lisbon, 2006)Google Scholar
  24. 24.
    E. Emmrich, O. Weckner, Analysis and numerical approximation of an integro-differential equation modelling non-local effects in linear elasticity. Math. Mech. Solid 12(4), 363–384 (2007)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    E. Emmrich, O. Weckner, On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun. Math. Sci. 5(4), 851–864 (2007)MathSciNetMATHGoogle Scholar
  26. 26.
    E. Emmrich, O. Weckner, The peridynamic equation and its spatial discretisation. Math. Model. Anal. 12(1), 17–27 (2007)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    H.A. Erbay, A. Erkip, G.M. Muslu, The Cauchy problem for a one dimensional nonlinear elastic peridynamic model. J. Differ. Equ. 252, 4392–4409 (2012)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    A.C. Eringen, Vistas of nonlocal continuum physics. Int. J. Eng. Sci. 30(10), 1551–1565 (1992)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    M. Gunzburger, R.B. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems. Multscale Model. Simul. 8, 1581–1598 (2010). doi:10.1137/090766607MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    D. Huang, Q. Zhang, P. Qiao, Damage and progressive failure of concrete structures using non-local peridynamic modeling. Sci. China Technol. Sci. 54(3), 591–596 (2011)MATHCrossRefGoogle Scholar
  31. 31.
    B. Kilic, E. Madenci, Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int. J. Fract. 156(2), 165–177 (2009)CrossRefGoogle Scholar
  32. 32.
    E. Kröner, Elasticity theory of materials with long range cohesive forces. Int. J. Solid Struct. 3, 731–742 (1967)MATHCrossRefGoogle Scholar
  33. 33.
    I.A. Kunin, Elastic Media with Microstructure, vol. I and II (Springer, Berlin, 1982/1983)Google Scholar
  34. 34.
    R.B. Lehoucq, M.P. Sears, Statistical mechanical foundation of the peridynamic nonlocal continuum theory: energy and momentum conservation laws. Phys. Rev. E 84, 031112 (2011)CrossRefGoogle Scholar
  35. 35.
    Y. Lei, M.I. Friswell, S. Adhikari, A Galerkin method for distributed systems with non-local damping. Int. J. Solid Struct. 43(11–12), 3381–3400 (2006)MATHCrossRefGoogle Scholar
  36. 36.
    M.L. Parks, R.B. Lehoucq, S.J. Plimpton, S.A. Silling, Implementing peridynamics within a molecular dynamics code. Comput. Phys. Commun. 179(11), 777–783 (2008)MATHCrossRefGoogle Scholar
  37. 37.
    A.A. Pisano, P. Fuschi, Closed form solution for a nonlocal elastic bar in tension. Int. J. Solid Struct. 40(1), 13–23 (2003)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    C. Polizzotto, Nonlocal elasticity and related variational principles. Int. J. Solid Struct. 38(42–43), 7359–7380 (2001)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    C. Polizzotto, Unified thermodynamic framework for nonlocal/gradient continuum mechanics. Eur. J. Mech. A Solid 22, 651–668 (2003)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    D. Rugola, Nonlocal Theory of Material Media (Springer, Berlin, 1982)Google Scholar
  41. 41.
    P. Seleson, M.L. Parks, M. Gunzburger, Peridynamic solid mechanics and the embedded atom model. Technical report SAND2010-8547J, Sandia National Laboratories, 2011Google Scholar
  42. 42.
    S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solid 48(1), 175–209 (2000)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    S.A. Silling, Peridynamic Modeling of the Kalthoff–Winkler Experiment. Submission for the 2001 Sandia Prize in Computational Science, 2002Google Scholar
  44. 44.
    S.A. Silling, Linearized theory of peridynamic states. J. Elast. 99, 85–111 (2010)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)CrossRefGoogle Scholar
  46. 46.
    S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    S.A. Silling, R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory. J. Elast. 93(1), 13–37 (2008)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    S.A. Silling, R.B. Lehoucq, Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)CrossRefGoogle Scholar
  49. 49.
    J. Wang, R.S. Dhaliwal, On some theorems in the nonlocal theory of micropolar elasticity. Int. J. Solid Struct. 30(10), 1331–1338 (1993)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    J. Wang, R.S. Dhaliwal, Uniqueness in generalized nonlocal thermoelasticity. J. Therm. Stresses 16, 71–77 (1993)MathSciNetCrossRefGoogle Scholar
  51. 51.
    K. Zhou, Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48(5), 1759–1780 (2010)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Etienne Emmrich
    • 1
  • Richard B. Lehoucq
    • 2
  • Dimitri Puhst
    • 1
  1. 1.Institut für MathematikTU BerlinBerlinGermany
  2. 2.Multiphysics Simulation TechnologiesSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations