Verifiable Conditions on Asymptotic Stabilisability for a Class of Planar Switched Linear Systems

  • Zhikun She
  • Haoyang Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7442)


In this paper, we propose a computer algebra based approach for analyzing asymptotic stabilisability of a class of planar switched linear systems, where subsystems are assumed to be alternatively active. We start with an algebraizable sufficient condition on the existence of stabilizing switching lines and a multiple Lyapunov function. Then, we apply a real root classification based method to under-approximate this condition such that the under-approximation only involves the parametric coefficients. Afterward, we additionally use quantifier elimination to eliminate parameters in the multiple Lyapunov function, arriving at a quantifier-free formula over parameters in the switching lines. According to our intermediate under-approximation as well as our final quantifier-free formula, we can easily design explicit stabilizing switching laws. Moreover, based on a prototypical implementation, we use an illustrating example to show the applicability of our approach. Finally, the advantages of our approach are demonstrated by the comparisons with some related works in the literature.


Asymptotic Stabilisability Switching Condition Quadratic Lyapunov Function Switching Line Switch Linear System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blondel, V.D., Bournez, O., Koiran, P., Tsitsiklis, J.N.: NP-hardness of Some Linear Control Design Problems. SIAM J. Control and Optimization 35(8), 2118–2127 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Blondel, V.D., Tsitsiklis, J.N.: The Stability of Saturated Linear Dynamical Systems is Undecidable. Journal of Computer and System Sciences 62(3), 442–462 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Branicky, M.S.: Multiple Lyapunov Functions and other Analysis Tools for Switched and Hybrid Systems. IEEE Transactions on Automatic Control 43(4), 751–760 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brown, C.W.: QEPCAD B: A System for Computing with Semi-algebraic Sets via Cylindrical Algebraic Decomposition. SIGSAM Bull 38(1), 23–24 (2004)CrossRefGoogle Scholar
  5. 5.
    Chen, C., Lemaire, F., Li, L., Maza, M.M., Pan, W., Xie, Y.: The ConstructibleSetTools and ParametricSystemsTools Modules of the RegularChains library in Maple. In: Proc. of the International Conf. on Computational Science and Its Applications, pp. 342–352 (2008)Google Scholar
  6. 6.
    Cheng, D., Guo, L., Lin, Y., Wang, Y.: Stabilization of Switched Linear Systems. IEEE Transactions on Automatic Control 50(5), 661–666 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Daafouz, J., Riedinger, R., Iung, C.: Stability Analysis and Control Synthesis for Switched Systems: A Switched Lyapunov Function Approach. IEEE Transactions on Automatic Control 47, 1883–1887 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Decarlo, R.A., Braanicky, M.S., Pettersson, S., Lennartson, B.: Perspectives and Results on the Stability and Stabilisability of Hybrid Systems. Proceedings of the IEEE 88(7), 1069–1082 (2000)CrossRefGoogle Scholar
  9. 9.
    Dolzmann, A., Sturm, T.: REDLOG: Computer Algebra Meets Computer Logic. SIGSAM Bull 31(2), 2–9 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Feron, E., Apkarian, P., Gahinet, P.: Analysis and Synthesis of Robust Control Systems via Parameter-dependent Lyapunov Functions. IEEE Transactions on Automatic Control 41(7), 1041–1046 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Huang, Z.H., Xiang, C., Lin, H., Lee, T.H.: Necessary and Sufficient Conditions for Regional Stabilisability of Generic Switched Linear Systems with a Pair of Planar Subsystems. International Journal of Control 83(4), 694–715 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Hespanha, J.P., Morse, A.S.: Stability of Switched Systems with Average Dwell-time. In: Proceedings of the 38th Conference on Decision and Control, pp. 2655–2660 (1999)Google Scholar
  13. 13.
    Lunze, J., Lamnabhi-Lagarrigue, F.: Handbook of Hybrid Systems Control: Theory, Tools, Applications. Cambridge University Press (2009)Google Scholar
  14. 14.
    Liberzon, D.: Switching in Systems and Control. Birkhauser, Boston (2003)zbMATHCrossRefGoogle Scholar
  15. 15.
    Liberzon, D., Morse, A.S.: Basic Problems in Stability and Design of Switched Systems. IEEE Control Systems Magazine 19(5), 59–70 (1999)CrossRefGoogle Scholar
  16. 16.
    Lin, H., Antasklis, P.J.: Switching Stabilisability for Continuous-time Uncertain Switched Linear Systems. IEEE Transactions on Automatic Control 52(4), 633–646 (2007)CrossRefGoogle Scholar
  17. 17.
    Lin, H., Antasklis, P.J.: Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results. IEEE Transactions on Automatic Control 52(2), 308–322 (2009)CrossRefGoogle Scholar
  18. 18.
    Narendra, K.S., Balakrishnan, J.: Adaptive Control using Multiple Models and Switching. IEEE Transactions on Automatic Control 42(2), 171–187 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Narendra, K.S., Xiang, C.: Adaptive Control of Discrete-time Systems using Multiple Models. IEEE Transactions on Automatic Control 45, 1669–1686 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Pettersson, S.: Synthesis of Switched Linear Systems. In: Proceedings of the 42nd Conference on Decision and Control, pp. 5283–5288 (2003)Google Scholar
  21. 21.
    Pettersson, S., Lennartson, B.: Stabilization of Hybrid Systems Using a Min-Projection Stategy. In: Proceedings of the American Control Conference, pp. 223–288 (2001)Google Scholar
  22. 22.
    Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions. SIAM Journal on Control and Optimization 48(7), 4377–4394 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Rodrigues, L., Hassibi, A., How, J.P.: Observer-based Control of Piecewise-affine Systems. International Journal of Control 76, 459–477 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    van der Schaft, A., Schumacher, H.: An Introduction to Hybrid Dynamical Systems. Springer, London (2000)zbMATHGoogle Scholar
  25. 25.
    She, Z., Xia, B., Xiao, R., Zheng, Z.: A semi-algebraic approach for asymptotic stability analysis. Nonlinear Analysis: Hybrid System 3(4), 588–596 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    She, Z., Xue, B., Zheng, Z.: Algebraic Analysis on Asymptotic Stability of Continuous Dynamical Systems. In: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, pp. 313–320 (2011)Google Scholar
  27. 27.
    She, Z., Xue, B.: Algebraic Analysis on Asymptotic Stability of Switched Hybrid Systems. In: Proceedings of the 15th International Conference on Hybrid Systems: Computation and Control, pp. 197–196 (2012)Google Scholar
  28. 28.
    She, Z., Yu, J., Xue, B.: Controllable Laws for Stability Analysis of Switched Linear Systems. In: Proceedings of the 3rd IEEE International Conference on Computer and Network Technology, vol. 13, pp. 127–131 (2011)Google Scholar
  29. 29.
    Shorten, R.N., Narendra, K.S.: Necessary and Sufficient Conditions for the Existence of a Common Quadratic Lyapunov Function for Two Stable Second Order Linear Time-invariant Systems. In: Proceedings of the American Control Conference, pp. 1410–1414 (1999)Google Scholar
  30. 30.
    Skafidas, E., Evans, R.J., Savkin, A.V., Petersen, I.R.: Stability Results for Switched Controller Systems. IEEE Transactions on Automatic Control 35(4), 553–564 (1999)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry. Univ. of California Press (1951)Google Scholar
  32. 32.
    Wicks, M.A., Peleties, P., DeCarlo, R.A.: Switched Controller Design for the Quadratic Stabilization of a Pair of Unstable Systems. European J. of Control 4(2), 140–147 (1998)zbMATHGoogle Scholar
  33. 33.
    Xu, X., Antasklis, P.J.: Switching Stabilisability for Continuous-time Uncertain Switched Linear Systems. International Journal of Control 73(14), 1261–1279 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Xu, X., Zhai, G.: On Practical Stability and Stabilization of Hybrid and Switched Systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 615–630. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhikun She
    • 1
  • Haoyang Li
    • 1
  1. 1.SKLSDE, LMIB and School of Mathematics and Systems ScienceBeihang UniversityBeijingChina

Personalised recommendations