Recent Developments in Planet Migration Theory

Part of the Lecture Notes in Physics book series (LNP, volume 861)

Abstract

Planetary migration is the process by which a forming planet undergoes a drift of its semi-major axis caused by the tidal interaction with its parent protoplanetary disc. One of the key quantities to assess the migration of embedded planets is the tidal torque between the disc and the planet, which has two components: the Lindblad torque and the corotation torque. We review the latest results on both components for planets in circular orbits, with special emphasis on the various processes that give rise to a large corotation torque and those contributing to its saturation. The additional corotation torque could help address the shortcomings that have recently been exposed in models of planet population synthesis. We also review recent results concerning the migration of giant planets that carve gaps in the disc (type II migration) and the migration of sub-giant planets that open partial gaps in massive discs (type III migration).

References

  1. 1.
    Artymowicz, P.: Disk-satellite interaction via density waves and the eccentricity evolution of bodies embedded in disks. Astrophys. J. 419, 166 (1993). doi:10.1086/173470 ADSCrossRefGoogle Scholar
  2. 2.
    Artymowicz, P.: On the wave excitation and a generalized torque formula for Lindblad resonances excited by external potential. Astrophys. J. 419, 155 (1993). doi:10.1086/173469 ADSCrossRefGoogle Scholar
  3. 3.
    Ayliffe, B.A., Bate, M.R.: Migration of protoplanets with surfaces through discs with steep temperature gradients. Mon. Not. R. Astron. Soc. 415, 576–586 (2011). doi:10.1111/j.1365-2966.2011.18730.x ADSCrossRefGoogle Scholar
  4. 4.
    Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. I—Linear analysis. II—Nonlinear evolution. Astrophys. J. 376, 214–233 (1991). doi:10.1086/170270 ADSCrossRefGoogle Scholar
  5. 5.
    Balmforth, N.J., Korycansky, D.G.: Non-linear dynamics of the corotation torque. Mon. Not. R. Astron. Soc. 326, 833–851 (2001). doi:10.1046/j.1365-8711.2001.04619.x ADSCrossRefGoogle Scholar
  6. 6.
    Baruteau, C.: Toward predictive scenarios of planetary migration. Ph.D. thesis. CEA Saclay, Service d’Astrophysique (2008) Google Scholar
  7. 7.
    Baruteau, C., Lin, D.N.C.: Protoplanetary migration in turbulent isothermal disks. Astrophys. J. 709, 759–773 (2010). doi:10.1088/0004-637X/709/2/759 ADSCrossRefGoogle Scholar
  8. 8.
    Baruteau, C., Masset, F.: On the corotation torque in a radiatively inefficient disk. Astrophys. J. 672, 1054–1067 (2008). doi:10.1086/523667 ADSCrossRefGoogle Scholar
  9. 9.
    Baruteau, C., Masset, F.: Type I planetary migration in a self-gravitating disk. Astrophys. J. 678, 483–497 (2008). doi:10.1086/529487 ADSCrossRefGoogle Scholar
  10. 10.
    Baruteau, C., Fromang, S., Nelson, R.P., Masset, F.: Corotation torques experienced by planets embedded in weakly magnetized turbulent discs. Astron. Astrophys. 533, A84 (2011). doi:10.1051/0004-6361/201117227 ADSCrossRefGoogle Scholar
  11. 11.
    Baruteau, C., Meru, F., Paardekooper, S.J.: Rapid inward migration of planets formed by gravitational instability. Mon. Not. R. Astron. Soc. 416, 1971–1982 (2011). doi:10.1111/j.1365-2966.2011.19172.x ADSCrossRefGoogle Scholar
  12. 12.
    Bate, M.R., Lubow, S.H., Ogilvie, G.I., Miller, K.A.: Three-dimensional calculations of high- and low-mass planets embedded in protoplanetary discs. Mon. Not. R. Astron. Soc. 341, 213–229 (2003). doi:10.1046/j.1365-8711.2003.06406.x ADSCrossRefGoogle Scholar
  13. 13.
    Bryden, G., Chen, X., Lin, D.N.C., Nelson, R.P., Papaloizou, J.C.B.: Tidally induced gap formation in protostellar disks: gap clearing and suppression of protoplanetary growth. Astrophys. J. 514, 344–367 (1999). doi:10.1086/306917 ADSCrossRefGoogle Scholar
  14. 14.
    Casoli, J., Masset, F.S.: On the horseshoe drag of a low-mass planet. I. Migration in isothermal disks. Astrophys. J. 703, 845–856 (2009). doi:10.1088/0004-637X/703/1/845 ADSCrossRefGoogle Scholar
  15. 15.
    Casoli, J., Masset, F.S.: (in prep.) Google Scholar
  16. 16.
    Crida, A., Morbidelli, A.: Cavity opening by a giant planet in a protoplanetary disc and effects on planetary migration. Mon. Not. R. Astron. Soc. 377, 1324–1336 (2007). doi:10.1111/j.1365-2966.2007.11704.x ADSCrossRefGoogle Scholar
  17. 17.
    Crida, A., Morbidelli, A., Masset, F.: On the width and shape of gaps in protoplanetary disks. Icarus 181, 587–604 (2006). doi:10.1016/j.icarus.2005.10.007 ADSCrossRefGoogle Scholar
  18. 18.
    Crida, A., Sándor, Z., Kley, W.: Influence of an inner disc on the orbital evolution of massive planets migrating in resonance. Astron. Astrophys. 483, 325–337 (2008). doi:10.1051/0004-6361:20079291 ADSCrossRefGoogle Scholar
  19. 19.
    Crida, A., Baruteau, C., Kley, W., Masset, F.: The dynamical role of the circumplanetary disc in planetary migration. Astron. Astrophys. 502, 679–693 (2009). doi:10.1051/0004-6361/200811608 ADSCrossRefGoogle Scholar
  20. 20.
    Crida, A., Masset, F., Morbidelli, A.: Long range outward migration of giant planets, with application to Fomalhaut b. Astrophys. J. Lett. 705, L148–L152 (2009). doi:10.1088/0004-637X/705/2/L148 ADSCrossRefGoogle Scholar
  21. 21.
    D’Angelo, G., Lubow, S.H.: Evolution of migrating planets undergoing gas accretion. Astrophys. J. 685, 560–583 (2008). doi:10.1086/590904 ADSCrossRefGoogle Scholar
  22. 22.
    D’Angelo, G., Henning, T., Kley, W.: Nested-grid calculations of disk-planet interaction. Astron. Astrophys. 385, 647–670 (2002) ADSCrossRefGoogle Scholar
  23. 23.
    D’Angelo, G., Henning, T., Kley, W.: Thermohydrodynamics of circumstellar disks with high-mass planets. Astrophys. J. 599, 548–576 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    D’Angelo, G., Kley, W., Henning, T.: Orbital migration and mass accretion of protoplanets in three-dimensional global computations with nested grids. Astrophys. J. 586, 540–561 (2003) ADSCrossRefGoogle Scholar
  25. 25.
    D’Angelo, G., Bate, M.R., Lubow, S.H.: The dependence of protoplanet migration rates on co-orbital torques. Mon. Not. R. Astron. Soc. 358, 316–332 (2005). doi:10.1111/j.1365-2966.2005.08866.x ADSCrossRefGoogle Scholar
  26. 26.
    Dong, R., Rafikov, R.R., Stone, J.M.: Density waves excited by low-mass planets in protoplanetary disks. II. High-resolution simulations of the nonlinear regime. Astrophys. J. 741, 57 (2011). doi:10.1088/0004-637X/741/1/57 ADSCrossRefGoogle Scholar
  27. 27.
    Doyle, L.R., Carter, J.A., Fabrycky, D.C., Slawson, R.W., Howell, S.B., Winn, J.N., Orosz, J.A., Prsa, A., Welsh, W.F., Quinn, S.N., Latham, D., Torres, G., Buchhave, L.A., Marcy, G.W., Fortney, J.J., Shporer, A., Ford, E.B., Lissauer, J.J., Ragozzine, D., Rucker, M., Batalha, N., Jenkins, J.M., Borucki, W.J., Koch, D., Middour, C.K., Hall, J.R., McCauliff, S., Fanelli, M.N., Quintana, E.V., Holman, M.J., Caldwell, D.A., Still, M., Stefanik, R.P., Brown, W.R., Esquerdo, G.A., Tang, S., Furesz, G., Geary, J.C., Berlind, P., Calkins, M.L., Short, D.R., Steffen, J.H., Sasselov, D., Dunham, E.W., Cochran, W.D., Boss, A., Haas, M.R., Buzasi, D., Fischer, D.: Kepler-16: a transiting circumbinary planet. Science 333, 1602 (2011). doi:10.1126/science.1210923 ADSCrossRefGoogle Scholar
  28. 28.
    Fleming, T., Stone, J.M.: Local magnetohydrodynamic models of layered accretion disks. Astrophys. J. 585, 908–920 (2003). doi:10.1086/345848 ADSCrossRefGoogle Scholar
  29. 29.
    Fromang, S., Terquem, C., Nelson, R.P.: Numerical simulations of type I planetary migration in non-turbulent magnetized discs. Mon. Not. R. Astron. Soc. 363, 943–953 (2005). doi:10.1111/j.1365-2966.2005.09498.x ADSCrossRefGoogle Scholar
  30. 30.
    Gammie, C.F.: Nonlinear outcome of gravitational instability in cooling, gaseous disks. Astrophys. J. 553, 174–183 (2001). doi:10.1086/320631 ADSCrossRefGoogle Scholar
  31. 31.
    Gautier, T.N. III, Charbonneau, D., Rowe, J.F., Marcy, G.W., Isaacson, H., Torres, G., Fressin, F., Rogers, L.A., Désert, J.M., Buchhave, L.A., Latham, D.W., Quinn, S.N., Ciardi, D.R., Fabrycky, D.C., Ford, E.B., Gilliland, R.L., Walkowicz, L.M., Bryson, S.T., Cochran, W.D., Endl, M., Fischer, D.A., Howel, S.B., Horch, E.P., Barclay, T., Batalha, N., Borucki, W.J., Christiansen, J.L., Geary, J.C., Henze, C.E., Holman, M.J., Ibrahim, K., Jenkins, J.M., Kinemuchi, K., Koch, D.G., Lissauer, J.J., Sanderfer, D.T., Sasselov, D.D., Seager, S., Silverio, K., Smith, J.C., Still, M., Stumpe, M.C., Tenenbaum, P., Van Cleve, J.: Kepler-20: a Sun-like star with three sub-Neptune exoplanets and two Earth-size candidates. ArXiv e-prints (2011) Google Scholar
  32. 32.
    Goldreich, P., Tremaine, S.: The excitation of density waves at the Lindblad and corotation resonances by an external potential. Astrophys. J. 233, 857–871 (1979). doi:10.1086/157448 MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Goldreich, P., Tremaine, S.: Disk-satellite interactions. Astrophys. J. 241, 425–441 (1980). doi:10.1086/158356 MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Goodman, J., Rafikov, R.R.: Planetary torques as the viscosity of protoplanetary disks. Astrophys. J. 552, 793–802 (2001) ADSCrossRefGoogle Scholar
  35. 35.
    Guilet, J., Baruteau, C., Papaloizou, J.C.B.: Type I planet migration in weakly magnetised laminar discs (submitted) Google Scholar
  36. 36.
    Hasegawa, Y., Pudritz, R.E.: Dead zones as thermal barriers to rapid planetary migration in protoplanetary disks. Astrophys. J. Lett. 710, L167–L171 (2010). doi:10.1088/2041-8205/710/2/L167 ADSCrossRefGoogle Scholar
  37. 37.
    Hellary, P., Nelson, R.P.: Global models of planetary system formation in radiatively-inefficient protoplanetary discs. Mon. Not. R. Astron. Soc. 419, 2737–2757 (2012). doi:10.1111/j.1365-2966.2011.19815.x ADSCrossRefGoogle Scholar
  38. 38.
    Howard, A.W., Marcy, G.W., Johnson, J.A., Fischer, D.A., Wright, J.T., Isaacson, H., Valenti, J.A., Anderson, J., Lin, D.N.C., Ida, S.: The occurrence and mass distribution of close-in super-earths, Neptunes, and Jupiters. Science 330, 653 (2010). doi:10.1126/science.1194854 ADSCrossRefGoogle Scholar
  39. 39.
    Ida, S., Lin, D.N.C.: Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. Astrophys. J. 604, 388–413 (2004). doi:10.1086/381724 ADSCrossRefGoogle Scholar
  40. 40.
    Ida, S., Lin, D.N.C.: Toward a deterministic model of planetary formation. IV. Effects of type I migration. Astrophys. J. 673, 487–501 (2008). doi:10.1086/523754 ADSCrossRefGoogle Scholar
  41. 41.
    Ivanov, P.B., Papaloizou, J.C.B., Polnarev, A.G.: The evolution of a supermassive binary caused by an accretion disc. Mon. Not. R. Astron. Soc. 307, 79–90 (1999). doi:10.1046/j.1365-8711.1999.02623.x ADSCrossRefGoogle Scholar
  42. 42.
    Jang-Condell, H.: Planet shadows in protoplanetary disks. I. Temperature perturbations. Astrophys. J. 679, 797–812 (2008). doi:10.1086/533583 ADSCrossRefGoogle Scholar
  43. 43.
    Johansen, A., Henning, T., Klahr, H.: Dust sedimentation and self-sustained Kelvin-Helmholtz turbulence in protoplanetary disk midplanes. Astrophys. J. 643, 1219–1232 (2006). doi:10.1086/502968 ADSCrossRefGoogle Scholar
  44. 44.
    Klahr, H.H., Bodenheimer, P.: Turbulence in accretion disks: vorticity generation and angular momentum transport via the global baroclinic instability. Astrophys. J. 582, 869–892 (2003) ADSCrossRefGoogle Scholar
  45. 45.
    Kley, W., Crida, A.: Migration of protoplanets in radiative discs. Astron. Astrophys. 487, L9–L12 (2008). doi:10.1051/0004-6361:200810033 ADSCrossRefGoogle Scholar
  46. 46.
    Kley, W., Nelson, R.P.: Planet-disk interaction and orbital evolution. ArXiv e-prints (2012) Google Scholar
  47. 47.
    Kley, W., Bitsch, B., Klahr, H.: Planet migration in three-dimensional radiative discs. Astron. Astrophys. 506, 971–987 (2009). doi:10.1051/0004-6361/200912072 ADSMATHCrossRefGoogle Scholar
  48. 48.
    Korycansky, D.G., Pollack, J.B.: Numerical calculations of the linear response of a gaseous disk to a protoplanet. Icarus 102, 150–165 (1993). doi:10.1006/icar.1993.1039 ADSCrossRefGoogle Scholar
  49. 49.
    Lagrange, A., Bonnefoy, M., Chauvin, G., Apai, D., Ehrenreich, D., Boccaletti, A., Gratadour, D., Rouan, D., Mouillet, D., Lacour, S., Kasper, M.: A giant planet imaged in the disk of the young star β pictoris. Science 329, 57 (2010). doi:10.1126/science.1187187 ADSCrossRefGoogle Scholar
  50. 50.
    Laughlin, G., Steinacker, A., Adams, F.C.: Type I planetary migration with MHD turbulence. Astrophys. J. 608, 489–496 (2004). doi:10.1086/386316 ADSCrossRefGoogle Scholar
  51. 51.
    Lesur, G., Papaloizou, J.C.B.: The subcritical baroclinic instability in local accretion disc models. Astron. Astrophys. 513, A60 (2010). doi:10.1051/0004-6361/200913594 ADSCrossRefGoogle Scholar
  52. 52.
    Li, H., Finn, J.M., Lovelace, R.V.E., Colgate, S.A.: Rossby wave instability of thin accretion disks. II. Detailed linear theory. Astrophys. J. 533, 1023–1034 (2000). doi:10.1086/308693 ADSCrossRefGoogle Scholar
  53. 53.
    Lin, D.N.C., Papaloizou, J.: Tidal torques on accretion discs in binary systems with extreme mass ratios. Mon. Not. R. Astron. Soc. 186, 799–812 (1979) ADSMATHGoogle Scholar
  54. 54.
    Lin, D.N.C., Papaloizou, J.: On the tidal interaction between protoplanets and the protoplanetary disk. III—Orbital migration of protoplanets. Astrophys. J. 309, 846–857 (1986). doi:10.1086/164653 ADSCrossRefGoogle Scholar
  55. 55.
    Lin, D.N.C., Papaloizou, J.C.B.: On the tidal interaction between protostellar disks and companions. In: Levy, E.H., Lunine, J.I. (eds.) Protostars and Planets III, pp. 749–835 (1993) Google Scholar
  56. 56.
    Lin, M.K., Papaloizou, J.C.B.: Type III migration in a low-viscosity disc. Mon. Not. R. Astron. Soc. 405, 1473–1490 (2010). doi:10.1111/j.1365-2966.2010.16560.x ADSGoogle Scholar
  57. 57.
    Lin, M.K., Papaloizou, J.C.B.: Edge modes in self-gravitating disc-planet interactions. Mon. Not. R. Astron. Soc. 415, 1445–1468 (2011). doi:10.1111/j.1365-2966.2011.18797.x ADSCrossRefGoogle Scholar
  58. 58.
    Lin, M.K., Papaloizou, J.C.B.: The effect of self-gravity on vortex instabilities in disc-planet interactions. Mon. Not. R. Astron. Soc. 415, 1426–1444 (2011). doi:10.1111/j.1365-2966.2011.18798.x ADSCrossRefGoogle Scholar
  59. 59.
    Lin, M.K., Papaloizou, J.C.B.: Outward migration of a giant planet with a gravitationally unstable gap edge. Mon. Not. R. Astron. Soc. 421, 780–788 (2012). doi:10.1111/j.1365-2966.2011.20352.x ADSGoogle Scholar
  60. 60.
    Lovelace, R.V.E., Li, H., Colgate, S.A., Nelson, A.F.: Rossby wave instability of Keplerian accretion disks. Astrophys. J. 513, 805–810 (1999). doi:10.1086/306900 ADSCrossRefGoogle Scholar
  61. 61.
    Lyra, W., Klahr, H.: The baroclinic instability in the context of layered accretion. Self-sustained vortices and their magnetic stability in local compressible unstratified models of protoplanetary disks. Astron. Astrophys. 527, A138 (2011). doi:10.1051/0004-6361/201015568 ADSCrossRefGoogle Scholar
  62. 62.
    Lyra, W., Paardekooper, S.J., MacLow, M.M.: Orbital migration of low-mass planets in evolutionary radiative models: avoiding catastrophic infall. Astrophys. J. Lett. 715, L68–L73 (2010). doi:10.1088/2041-8205/715/2/L68 ADSCrossRefGoogle Scholar
  63. 63.
    Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafrenière, D., Doyon, R.: Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348 (2008). doi:10.1126/science.1166585 ADSCrossRefGoogle Scholar
  64. 64.
    Marois, C., Zuckerman, B., Konopacky, Q.M., Macintosh, B., Barman, T.: Images of a fourth planet orbiting HR 8799. Nature 468, 1080–1083 (2010). doi:10.1038/nature09684 ADSCrossRefGoogle Scholar
  65. 65.
    Masset, F.S.: On the co-orbital corotation torque in a viscous disk and its impact on planetary migration. Astrophys. J. 558, 453–462 (2001) ADSCrossRefGoogle Scholar
  66. 66.
    Masset, F.S.: The co-orbital corotation torque in a viscous disk: numerical simulations. Astron. Astrophys. 387, 605–623 (2002) ADSCrossRefGoogle Scholar
  67. 67.
    Masset, F.S.: Planet-disk interactions. EAS Publ. Ser. 29, 165–244 (2008). doi:10.1051/eas:0829006 CrossRefGoogle Scholar
  68. 68.
    Masset, F.S.: On type-I migration near opacity transitions. A generalized Lindblad torque formula for planetary population synthesis. Celest. Mech. Dyn. Astron. 111, 131–160 (2011). doi:10.1007/s10569-011-9364-0 ADSCrossRefGoogle Scholar
  69. 69.
    Masset, F.S., Casoli, J.: On the horseshoe drag of a low-mass planet. II. Migration in adiabatic disks. Astrophys. J. 703, 857–876 (2009). doi:10.1088/0004-637X/703/1/857 ADSCrossRefGoogle Scholar
  70. 70.
    Masset, F.S., Casoli, J.: Saturated torque formula for planetary migration in viscous disks with thermal diffusion: recipe for protoplanet population synthesis. Astrophys. J. 723, 1393–1417 (2010). doi:10.1088/0004-637X/723/2/1393 ADSCrossRefGoogle Scholar
  71. 71.
    Masset, F.S., Papaloizou, J.C.B.: Runaway migration and the formation of hot Jupiters. Astrophys. J. 588, 494–508 (2003) ADSCrossRefGoogle Scholar
  72. 72.
    Masset, F., Snellgrove, M.: Reversing type II migration: resonance trapping of a lighter giant protoplanet. Mon. Not. R. Astron. Soc. 320, L55 (2001) ADSCrossRefGoogle Scholar
  73. 73.
    Masset, F.S., D’Angelo, G., Kley, W.: On the migration of protogiant solid cores. Astrophys. J. 652, 730–745 (2006). doi:10.1086/507515 ADSCrossRefGoogle Scholar
  74. 74.
    Masset, F.S., Morbidelli, A., Crida, A., Ferreira, J.: Disk surface density transitions as protoplanet traps. Astrophys. J. 642, 478–487 (2006). doi:10.1086/500967 ADSCrossRefGoogle Scholar
  75. 75.
    Mayor, M., Queloz, D.: A Jupiter-mass companion to a Solar-type star. Nature 378, 355 (1995). doi:10.1038/378355a0 ADSCrossRefGoogle Scholar
  76. 76.
    Menou, K., Goodman, J.: Low-mass protoplanet migration in T Tauri α-disks. Astrophys. J. 606, 520–531 (2004). doi:10.1086/382947 ADSCrossRefGoogle Scholar
  77. 77.
    Michael, S., Durisen, R.H., Boley, A.C.: Migration of gas giant planets in gravitationally unstable disks. Astrophys. J. Lett. 737, L42 (2011). doi:10.1088/2041-8205/737/2/L42 ADSCrossRefGoogle Scholar
  78. 78.
    Mordasini, C., Alibert, Y., Benz, W., Naef, D.: Extrasolar planet population synthesis. II. Statistical comparison with observations. Astron. Astrophys. 501, 1161–1184 (2009). doi:10.1051/0004-6361/200810697 ADSCrossRefGoogle Scholar
  79. 79.
    Morohoshi, K., Tanaka, H.: Gravitational interaction between a planet and an optically thin disc. Mon. Not. R. Astron. Soc. 346, 915–923 (2003). doi:10.1111/j.1365-2966.2003.07140.x ADSCrossRefGoogle Scholar
  80. 80.
    Murray, C.D., Dermott, S.F.: Solar System Dynamics. Solar System Dynamics. Cambridge University Press, Cambridge (2000). ISBN 0521575974 Google Scholar
  81. 81.
    Muto, T., Machida, M.N., Inutsuka, S.i.: The effect of poloidal magnetic field on type I planetary migration: significance of magnetic resonance. Astrophys. J. 679, 813–826 (2008). doi:10.1086/587027 ADSCrossRefGoogle Scholar
  82. 82.
    Nelson, R.P.: On the orbital evolution of low mass protoplanets in turbulent, magnetised disks. Astron. Astrophys. 443, 1067–1085 (2005). doi:10.1051/0004-6361:20042605 ADSCrossRefGoogle Scholar
  83. 83.
    Nelson, R.P., Papaloizou, J.C.B.: The interaction of a giant planet with a disc with MHD turbulence—II. The interaction of the planet with the disc. Mon. Not. R. Astron. Soc. 339, 993–1005 (2003). doi:10.1046/j.1365-8711.2003.06247.x ADSCrossRefGoogle Scholar
  84. 84.
    Nelson, R.P., Papaloizou, J.C.B.: The interaction of giant planets with a disc with MHD turbulence—IV. Migration rates of embedded protoplanets. Mon. Not. R. Astron. Soc. 350, 849–864 (2004). doi:10.1111/j.1365-2966.2004.07406.x ADSCrossRefGoogle Scholar
  85. 85.
    Ogilvie, G.I., Lubow, S.H.: On the wake generated by a planet in a disc. Mon. Not. R. Astron. Soc. 330, 950–954 (2002). doi:10.1046/j.1365-8711.2002.05148.x ADSCrossRefGoogle Scholar
  86. 86.
    Paardekooper, S.J., Mellema, G.: Halting type I planet migration in non-isothermal disks. Astron. Astrophys. 459, L17–L20 (2006). doi:10.1051/0004-6361:20066304 ADSCrossRefGoogle Scholar
  87. 87.
    Paardekooper, S.J., Mellema, G.: Growing and moving low-mass planets in non-isothermal disks. Astron. Astrophys. 478, 245–266 (2008). doi:10.1051/0004-6361:20078592 ADSCrossRefGoogle Scholar
  88. 88.
    Paardekooper, S.J., Papaloizou, J.C.B.: On disc protoplanet interactions in a non-barotropic disc with thermal diffusion. Astron. Astrophys. 485, 877–895 (2008). doi:10.1051/0004-6361:20078702 ADSMATHCrossRefGoogle Scholar
  89. 89.
    Paardekooper, S.J., Papaloizou, J.C.B.: On corotation torques, horseshoe drag and the possibility of sustained stalled or outward protoplanetary migration. Mon. Not. R. Astron. Soc. 394, 2283–2296 (2009). doi:10.1111/j.1365-2966.2009.14511.x ADSCrossRefGoogle Scholar
  90. 90.
    Paardekooper, S.J., Papaloizou, J.C.B.: On the width and shape of the corotation region for low-mass planets. Mon. Not. R. Astron. Soc. 394, 2297–2309 (2009). doi:10.1111/j.1365-2966.2009.14512.x ADSCrossRefGoogle Scholar
  91. 91.
    Paardekooper, S., Baruteau, C., Crida, A., Kley, W.: A torque formula for non-isothermal type I planetary migration—I. Unsaturated horseshoe drag. Mon. Not. R. Astron. Soc. 401, 1950–1964 (2010). doi:10.1111/j.1365-2966.2009.15782.x ADSCrossRefGoogle Scholar
  92. 92.
    Paardekooper, S., Baruteau, C., Kley, W.: A torque formula for non-isothermal type I planetary migration—II. Effects of diffusion. Mon. Not. R. Astron. Soc. 410, 293–303 (2011). doi:10.1111/j.1365-2966.2010.17442.x ADSCrossRefGoogle Scholar
  93. 93.
    Papaloizou, J.C.B., Nelson, R.P., Snellgrove, M.D.: The interaction of giant planets with a disc with MHD turbulence—III. Flow morphology and conditions for gap formation in local and global simulations. Mon. Not. R. Astron. Soc. 350, 829–848 (2004). doi:10.1111/j.1365-2966.2004.07566.x ADSCrossRefGoogle Scholar
  94. 94.
    Pepe, F., Lovis, C., Ségransan, D., Benz, W., Bouchy, F., Dumusque, X., Mayor, M., Queloz, D., Santos, N.C., Udry, S.: The HARPS search for Earth-like planets in the habitable zone. I. Very low-mass planets around HD 20794, HD 85512, and HD 192310. Astron. Astrophys. 534, A58 (2011). doi:10.1051/0004-6361/201117055 ADSCrossRefGoogle Scholar
  95. 95.
    Pepliński, A., Artymowicz, P., Mellema, G.: Numerical simulations of type III planetary migration—I. Disc model and convergence tests. Mon. Not. R. Astron. Soc. 386, 164–178 (2008). doi:10.1111/j.1365-2966.2008.13045.x ADSCrossRefGoogle Scholar
  96. 96.
    Pepliński, A., Artymowicz, P., Mellema, G.: Numerical simulations of type III planetary migration—II. Inward migration of massive planets. Mon. Not. R. Astron. Soc. 386, 179–198 (2008). doi:10.1111/j.1365-2966.2008.13046.x ADSCrossRefGoogle Scholar
  97. 97.
    Pepliński, A., Artymowicz, P., Mellema, G.: Numerical simulations of type III planetary migration—III. Outward migration of massive planets. Mon. Not. R. Astron. Soc. 387, 1063–1079 (2008). doi:10.1111/j.1365-2966.2008.13339.x ADSCrossRefGoogle Scholar
  98. 98.
    Pierens, A., Huré, J.M.: How does disk gravity really influence type-I migration? Astron. Astrophys. 433, L37–L40 (2005). doi:10.1051/0004-6361:200500099 ADSCrossRefGoogle Scholar
  99. 99.
    Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y.: Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996). doi:10.1006/icar.1996.0190 ADSCrossRefGoogle Scholar
  100. 100.
    Rafikov, R.R.: Can giant planets form by direct gravitational instability? Astrophys. J. Lett. 621, L69–L72 (2005). doi:10.1086/428899 ADSCrossRefGoogle Scholar
  101. 101.
    Schlaufman, K.C., Lin, D.N.C., Ida, S.: The signature of the ice line and modest type I migration in the observed exoplanet mass-semimajor axis distribution. Astrophys. J. 691, 1322–1327 (2009). doi:10.1088/0004-637X/691/2/1322 ADSCrossRefGoogle Scholar
  102. 102.
    Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973) ADSGoogle Scholar
  103. 103.
    Syer, D., Clarke, C.J.: Satellites in discs: regulating the accretion luminosity. Mon. Not. R. Astron. Soc. 277, 758–766 (1995) ADSGoogle Scholar
  104. 104.
    Tanaka, H., Takeuchi, T., Ward, W.R.: Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2002) ADSCrossRefGoogle Scholar
  105. 105.
    Terquem, C.E.J.M.L.J.: Stopping inward planetary migration by a toroidal magnetic field. Mon. Not. R. Astron. Soc. 341, 1157–1173 (2003). doi:10.1046/j.1365-8711.2003.06455.x ADSCrossRefGoogle Scholar
  106. 106.
    Uribe, A.L., Klahr, H., Flock, M., Henning, T.: Three-dimensional magnetohydrodynamic simulations of planet migration in turbulent stratified disks. Astrophys. J. 736, 85 (2011). doi:10.1088/0004-637X/736/2/85 ADSCrossRefGoogle Scholar
  107. 107.
    Walsh, K.J., Morbidelli, A., Raymond, S.N., O’Brien, D.P., Mandell, A.M.: A low mass for mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011). doi:10.1038/nature10201 ADSCrossRefGoogle Scholar
  108. 108.
    Ward, W.R.: Density waves in the solar nebula—differential Lindblad torque. Icarus 67, 164–180 (1986). doi:10.1016/0019-1035(86)90182-X ADSCrossRefGoogle Scholar
  109. 109.
    Ward, W.R.: Horsehoe orbit drag. In: Lunar and Planetary Institute Conference Abstracts, pp. 1463 (1991) Google Scholar
  110. 110.
    Ward, W.R.: Protoplanet migration by nebula tides. Icarus 126, 261–281 (1997) ADSCrossRefGoogle Scholar
  111. 111.
    Ward, W.R.: A streamline model of horseshoe torque saturation. In: Lunar and Planetary Institute Science Conference Abstracts, vol. 38, p. 2289 (2007) Google Scholar
  112. 112.
    Winters, W.F., Balbus, S.A., Hawley, J.F.: Gap formation by planets in turbulent protostellar disks. Astrophys. J. 589, 543–555 (2003). doi:10.1086/374409 ADSCrossRefGoogle Scholar
  113. 113.
    Zhang, H., Lai, D.: Wave excitation in three-dimensional discs by external potential. Mon. Not. R. Astron. Soc. 368, 917–934 (2006). doi:10.1111/j.1365-2966.2006.10167.x ADSCrossRefGoogle Scholar
  114. 114.
    Zhang, H., Yuan, C., Lin, D.N.C., Yen, D.C.C.: On the orbital evolution of a Jovian planet embedded in a self-gravitating disk. Astrophys. J. 676, 639–650 (2008). doi:10.1086/528707 ADSCrossRefGoogle Scholar
  115. 115.
    Zhu, Z., Hartmann, L., Nelson, R.P., Gammie, C.F.: Challenges in forming planets by gravitational instability: disk irradiation and clump migration, accretion, and tidal destruction. Astrophys. J. 746, 110 (2012). doi:10.1088/0004-637X/746/1/110 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.DAMTPUniversity of CambridgeCambridgeUK
  2. 2.Instituto de Ciencias FísicasUniversidad Nacional Autónoma de México (UNAM)CuernavacaMexico

Personalised recommendations