Skip to main content

Dissipative Particle Dynamics (DPD)

A Particle-Based Method

  • Chapter

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

In this chapter, we learn of a particle-based technique for solving flow problems for complex structure fluids. In DPD, the fluid particles are modeled as DPD particles, interacting with others, going through their second Newtonian law motions. At the end, averages can be formed for the fluid density, linear momentum, which satisfy conservation laws: conservation of mass and momentum. The technique is therefore can be termed particle-based. Overall, this compact book outlines the main basic development in viscoelasticity, from continuum principle to microstructural modeling. We hope that this book may be a good graduate text, or reference.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Arienti, W. Pan, X. Li, G. Karniadakis, J. Chem. Phys. 134, 204114 (2011)

    Article  ADS  Google Scholar 

  2. E.B. Bagley, Food Extrusion Science and Technology (Dekker, New York, 1992)

    Google Scholar 

  3. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics, 2nd edn. (Wiley, New York, 1987)

    Google Scholar 

  4. E. Boek, P. Coveney, H. Lekkerkerker, J. Phys. Condens. Matter 8(47), 9509–9512 (1996)

    Article  ADS  Google Scholar 

  5. C. Bustamante, J.F. Marko, E.D. Siggia, S. Smith, Science 265, 1500–1600 (1994)

    Article  Google Scholar 

  6. S. Chandrasekhar, Rev. Mod. Phys. 15, 1–89 (1943)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. S. Chen, N. Phan-Thien, B.C. Khoo, X.-J. Fan, Phys. Fluids 18, 103605 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1988)

    Google Scholar 

  9. D. Duong-Hong, N. Phan-Thien, X.-J. Fan, Comput. Mech. 35, 24–29 (2004)

    Article  MATH  Google Scholar 

  10. P. Español, P. Warren, Europhys. Lett. 30(4), 191–196 (1995)

    Article  ADS  Google Scholar 

  11. X.-J. Fan, N. Phan-Thien, R. Zheng, J. Non-Newton. Fluid Mech. 84(2–3), 257–274 (1999)

    Article  MATH  Google Scholar 

  12. X.-J. Fan, N. Phan-Thien, S. Chen, X. Wu, T.Y. Ng, Phys. Fluids 18(6), 063102 (2006)

    Article  ADS  Google Scholar 

  13. F.P. Folgar, C.L. Tucker Jr., J. Reinf. Plast. Compos. 3, 98–119 (1984)

    Article  ADS  Google Scholar 

  14. U. Frisch, B. Hasslachcher, Y. Pomeau, Phys. Rev. Lett. 56, 1505–1508 (1986)

    Article  ADS  Google Scholar 

  15. R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423 (1997)

    Article  ADS  Google Scholar 

  16. P. Hoogerbrugge, J. Koelman, Europhys. Lett. 19(3), 155–160 (1992)

    Article  ADS  Google Scholar 

  17. J.H. Irving, J.G. Kirkwood, J. Chem. Phys. 18, 817–829 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  18. E.E. Keaveny, I.V. Pivkin, M. Maxey, G.E. Karniadakis, J. Chem. Phys. 123, 104107 (2005)

    Article  ADS  Google Scholar 

  19. Y. Kong, C. Manke, W. Madden, A. Schlijper, J. Chem. Phys. 107(2), 592–602 (1997)

    Article  ADS  Google Scholar 

  20. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1959). Translated by J.B. Sykes and W.H. Reid

    Google Scholar 

  21. R.G. Larson, T.T. Perkins, D.E. Smith, S. Chu, Phys. Rev. E 55(2), 1794–1797 (1997)

    Article  ADS  Google Scholar 

  22. R.G. Larson, H. Hu, D.E. Smith, S. Chu, J. Rheol. 43(2), 267–304 (1999)

    Article  ADS  Google Scholar 

  23. C. Marsh, Theoretical Aspects of Dissipative Particle Dynamics, PhD thesis, University of Oxford, Oxford, 1998

    Google Scholar 

  24. P. Ninkunen, M. Karttunen, I. Vattulainen, Comput. Phys. Commun. 153, 407 (2003)

    Article  ADS  Google Scholar 

  25. L. Novik, P. Coveney, Int. J. Mod. Phys. C 8(4), 909–918 (1997)

    Article  ADS  Google Scholar 

  26. W. Pan, I.V. Pivkin, G.E. Karniadakis, Europhys. Lett. 84, 10012 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  27. I.V. Pivkin, B. Caswell, G. Em Karniadakis, Rev. Comput. Chem. 27, 85–110 (2011)

    Google Scholar 

  28. D. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  29. L.E. Reichl, A Modern Course in Statistical Physics (University of Texas Press, Austin, 1980)

    Google Scholar 

  30. M. Revenga, I. Zuñiga, P. Español, Int. J. Mod. Phys. C 9(8), 1319–1328 (1998)

    Article  ADS  Google Scholar 

  31. L.F. Shampine, C.W. Gear, SIAM Rev. 21(1), 1–17 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. L.E. Wedgewood, D.N. Ostrov, R.B. Bird, J. Non-Newton. Fluid Mech. 40, 119–139 (1991)

    Article  MATH  Google Scholar 

  33. S. Willemsen, H. Hoefsloot, P. Iedema, Int. J. Mod. Phys. C 11(5), 881–890 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phan-Thien, N. (2013). Dissipative Particle Dynamics (DPD). In: Understanding Viscoelasticity. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32958-6_9

Download citation

Publish with us

Policies and ethics