Efficient Private Proximity Testing with GSM Location Sketches

  • Zi Lin
  • Denis Foo Kune
  • Nicholas Hopper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7397)


A protocol for private proximity testing allows two mobile users communicating through an untrusted third party to test whether they are in close physical proximity without revealing any additional information about their locations. At NDSS 2011, Narayanan and others introduced the use of unpredictable sets of “location tags” to secure these schemes against attacks based on guessing another user’s location. Due to the need to perform privacy-preserving threshold set intersection, their scheme was not very efficient. We provably reduce threshold set intersection on location tags to equality testing using a de-duplication technique known as shingling. Due to the simplicity of private equality testing, our resulting scheme for location tag-based private proximity testing is several orders of magnitude more efficient than previous solutions. We also explore GSM cellular networks as a new source of location tags, and demonstrate empirically that our proposed location tag scheme has strong unpredictability and reproducibility.


Mobile Station Cellular Network Location Privacy Paging Request Public Switch Telephone Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    United nations international telecommunication union sees 5 billion mobile subscriptions globally in 2010 (2010),
  3. 3.
    The osmocombb project – open source gsm baseband software implementation (2011),
  4. 4.
    3GPP. Mobile radio interface layer 3 specification. TS 04.08, 3rd Generation Partnership Project (3GPP) (January 2004)Google Scholar
  5. 5.
    3GPP. Network architecture. TS 23.002, 3rd Generation Partnership Project (3GPP) (March 2011)Google Scholar
  6. 6.
    Atallah, M.J., Du, W.: Secure Multi-party Computational Geometry. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 165–179. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Beresford, A.R., Stajano, F.: Location privacy in pervasive computing, Piscataway, NJ, USA, vol. 2, pp. 46–55. IEEE Educational Activities Department (January 2003)Google Scholar
  8. 8.
    Broder, A.: Identifying and Filtering Near-Duplicate Documents. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 1–10. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of the web. Computer Networks and ISDN Systems 29(8-13), 1157–1166 (1997); Papers from the Sixth International World Wide Web ConferenceCrossRefGoogle Scholar
  10. 10.
    De Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols with Linear Complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Di Qiu, D., Lo, S., Enge, P.: Robust location tag generation from noisy location data for security applications. The Institute of Navigation International Technical Meeting (2009)Google Scholar
  12. 12.
    Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Commun. ACM, 77–85 (1996)Google Scholar
  13. 13.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: Proceedings of the 1st International Conference on Mobile Systems, Applications and Services, MobiSys 2003, pp. 31–42. ACM, New York (2003)CrossRefGoogle Scholar
  15. 15.
    Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Matching with Security Against Malicious and Covert Adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adversaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 312–331. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Holmquist, L.E., Falk, J., Wigstrm, J.: Supporting group collaboration with interpersonal awareness devices. Personal and Ubiquitous Computing 3 (1991)Google Scholar
  18. 18.
    Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  19. 19.
    Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Jarecki, S., Liu, X.: Fast Secure Computation of Set Intersection. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)Google Scholar
  22. 22.
    Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location privacy via private proximity testing. In: Network and Distributed System Security Symposium. Internet Society (February 2011)Google Scholar
  23. 23.
    Qiu, D., Lo, S., Enge, P., Boneh, D., Peterson, B.: Geoencryption using loran. The Institute of Navigation International Technical Meeting (2007)Google Scholar
  24. 24.
    Shokri, R., Troncoso, C., Diaz, C., Freudiger, J., Hubaux, J.-P.: Unraveling an old cloak: k-anonymity for location privacy. In: Proceedings of the 9th Annual ACM Workshop on Privacy in the Electronic Society, WPES 2010, pp. 115–118. ACM, New York (2010)CrossRefGoogle Scholar
  25. 25.
    Terry, M., Mynatt, E.D., Ryall, K., Leigh, D.: Social net: using patterns of physical proximity over time to infer shared interests. In: CHI 2002 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2002, pp. 816–817. ACM, New York (2002)CrossRefGoogle Scholar
  26. 26.
    Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, SFCS 1982, pp. 160–164. IEEE Computer Society, Washington, DC (1982)CrossRefGoogle Scholar
  27. 27.
    Zhong, G., Goldberg, I., Hengartner, U.: Louis, Lester and Pierre: Three Protocols for Location Privacy. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 62–76. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zi Lin
    • 1
  • Denis Foo Kune
    • 1
  • Nicholas Hopper
    • 1
  1. 1.Computer Science & EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations