Skip to main content

On Secure Two-Party Integer Division

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 7397)

Abstract

We consider the problem of secure integer division: given two Paillier encryptions of ℓ-bit values n and d, determine an encryption of \(\lfloor \frac{n}{d}\rfloor\) without leaking any information about n or d. We propose two new protocols solving this problem.

The first requires \(\ensuremath{\mathcal{O}}(\ell)\) arithmetic operations on encrypted values (secure addition and multiplication) in \(\ensuremath{\mathcal{O}}(1)\) rounds. This is the most efficient constant-rounds solution to date. The second protocol requires only \(\ensuremath{\mathcal{O}} \left( (\log^2 \ell)(\kappa + \operatorname{loglog} \ell) \right)\) arithmetic operations in \(\ensuremath{\mathcal{O}}(\log^2 \ell)\) rounds, where κ is a correctness parameter. Theoretically, this is the most efficient solution to date as all previous solutions have required Ω(ℓ) operations. Indeed, the fact that an o(ℓ) solution is possible at all is highly surprising.

Keywords

  • Secure two-party computation
  • Secure integer division

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-32946-3_13
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-32946-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient Computation Modulo a Shared Secret with Application to the Generation of Shared Safe-Prime Products. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  2. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a constant number of rounds of interaction. In: Rudnicki, P. (ed.) Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed Computing, pp. 201–209. ACM Press, New York (1989)

    CrossRef  Google Scholar 

  3. Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Secure Multiparty Computation Goes Live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press (1988)

    Google Scholar 

  5. Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  6. Catrina, O., Dragulin, C.: Multiparty computation of fixed-point multiplication and reciprocal. In: International Workshop on Database and Expert Systems Applications, pp. 107–111 (2009)

    Google Scholar 

  7. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty Computation from Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  8. Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure Constant-Rounds Multi-party Computation for Equality, Comparison, Bits and Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  9. Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  10. Dahl, M., Ning, C., Toft, T.: On secure two-party integer division. Technical report (2012), http://eprint.iacr.org/2012/164

  11. From, S., Jakobsen, T.: Secure multi-party computation on integers. Master’s thesis, Aarhus University (2005), http://users-cs.au.dk/tpj/uni/thesis/

  12. Fouque, P., Stern, J., Wackers, J.: Cryptocomputing with Rationals. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  13. Guajardo, J., Mennink, B., Schoenmakers, B.: Modulo Reduction for Paillier Encryptions and Application to Secure Statistical Analysis. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 375–382. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  14. Hesse, W., Allender, E., Mix Barrington, D.A.: Uniform constant-depth threshold circuits for division and iterated multiplication. Journal of Computer and System Sciences 65(4), 695–716 (2002)

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Henecka, W., Kögl, S., Sadeghi, A., Schneider, T., Wehrenberg, I.: TASTY: tool for automating secure two-party computations. In: CCS 2010: Proceedings of the 17th ACM Conference on Computer and Communications Security, pp. 451–462. ACM, New York (2010)

    CrossRef  Google Scholar 

  16. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over arbitrarily partitioned data. In: Grossman, R., Bayardo, R.J., Bennett, K.P. (eds.) KDD, pp. 593–599. ACM (2005)

    Google Scholar 

  17. Kiltz, E., Leander, G., Malone-Lee, J.: Secure Computation of the Mean and Related Statistics. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 283–302. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  18. Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  19. Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and Comparison Without Bit-Decomposition Protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  20. Ning, C., Xu, Q.: Multiparty Computation for Modulo Reduction without Bit-Decomposition and a Generalization to Bit-Decomposition. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 483–500. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  21. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Google Scholar 

  22. Reistad, T., Toft, T.: Linear, Constant-Rounds Bit-Decomposition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 245–257. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  23. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

    Google Scholar 

  24. Toft, T.: Sub-linear, Secure Comparison with Two Non-colluding Parties. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 174–191. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  25. Veugen, T.: Encrypted integer division. In: IEEE Workshop on Information Forensics and Security (WIFS 2010). IEEE, Seattle (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dahl, M., Ning, C., Toft, T. (2012). On Secure Two-Party Integer Division. In: Keromytis, A.D. (eds) Financial Cryptography and Data Security. FC 2012. Lecture Notes in Computer Science, vol 7397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32946-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32946-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32945-6

  • Online ISBN: 978-3-642-32946-3

  • eBook Packages: Computer ScienceComputer Science (R0)