Skip to main content

Quantitative Analysis of Locally Geometric Semantic Crossover

  • Conference paper
Parallel Problem Solving from Nature - PPSN XII (PPSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7491))

Included in the following conference series:

  • 1910 Accesses

Abstract

We investigate the properties of locally geometric semantic crossover (LGX), a genetic programming search operator that is approximately semantically geometric on the level of homologous code fragments. For a pair of corresponding loci in the parents, LGX finds a semantically intermediate procedure from a library prepared prior to evolutionary run, and creates an offspring by using such procedure as replacement code. LGX proves superior when compared to standard subtree crossover and other control methods in terms of search convergence, test-set performance, and time required to find a high-quality solution. This paper focuses in particular the impact of homology and program semantic on LGX performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. ACM SIGMOD Conf., p. 47, Boston, MA (June 1984); Reprinted in Stonebraker, M.: Readings in Database Sys. Morgan Kaufmann, San Mateo, CA (1988)

    Google Scholar 

  2. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  3. Krawiec, K.: Medial Crossovers for Genetic Programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 61–72. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: Raidl, G., et al. (eds.) GECCO 2009: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, Montreal, July 8-12, pp. 987–994. ACM (2009)

    Google Scholar 

  5. Krawiec, K., Pawlak, T.: Locally geometric semantic crossover. In: GECCO 2012: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, Philadelphia, PA, USA. ACM Press (accepted, July 2012)

    Google Scholar 

  6. Krawiec, K., Wieloch, B.: Automatic generation and exploitation of related problems in genetic programming. In: IEEE Congress on Evolutionary Computation (CEC 2010), July 18-23. IEEE Press, Barcelona (2010)

    Google Scholar 

  7. Luke, S.: The ECJ Owner’s Manual – A User Manual for the ECJ Evolutionary Computation Library, zeroth edition, online version 0.2 edition (October 2010)

    Google Scholar 

  8. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic Building Blocks in Genetic Programming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Moraglio, A., Krawiec, K., Johnson, C.: Geometric semantic genetic programming. In: Igel, C., et al. (eds.) The 5th Workshop on Theory of Randomized Search Heuristics, ThRaSH 2011, Copenhagen, Denmark, July 8-9 (2011)

    Google Scholar 

  10. Moraglio, A., Poli, R.: Topological Interpretation of Crossover. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1377–1388. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic Aware Crossover for Genetic Programming: The Case for Real-Valued Function Regression. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 292–302. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Papadopoulos, A., Manolopoulos, Y.: Performance of Nearest Neighbor Queries in R-Trees. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 394–408. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  13. Poli, R., Langdon, W.B.: Schema theory for genetic programming with one-point crossover and point mutation. Evolutionary Computation 6(3), 231–252 (1998)

    Article  Google Scholar 

  14. Ryan, C., Keijzer, M., Cattolico, M.: Favorable biasing of function sets using run transferable libraries. In: O’Reilly, U.-M., et al. (eds.) Genetic Programming Theory and Practice II, May 13-15, ch.7, pp. 103–120. Springer, Ann Arbor (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krawiec, K., Pawlak, T. (2012). Quantitative Analysis of Locally Geometric Semantic Crossover. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32937-1_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32936-4

  • Online ISBN: 978-3-642-32937-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics