Using Expert Knowledge to Guide Covering and Mutation in a Michigan Style Learning Classifier System to Detect Epistasis and Heterogeneity

  • Ryan J. Urbanowicz
  • Delaney Granizo-Mackenzie
  • Jason H. Moore
Conference paper

DOI: 10.1007/978-3-642-32937-1_27

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7491)
Cite this paper as:
Urbanowicz R.J., Granizo-Mackenzie D., Moore J.H. (2012) Using Expert Knowledge to Guide Covering and Mutation in a Michigan Style Learning Classifier System to Detect Epistasis and Heterogeneity. In: Coello C.A.C., Cutello V., Deb K., Forrest S., Nicosia G., Pavone M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg

Abstract

Learning Classifier Systems (LCSs) are a unique brand of multifaceted evolutionary algorithms well suited to complex or heterogeneous problem domains. One such domain involves data mining within genetic association studies which investigate human disease. Previously we have demonstrated the ability of Michigan-style LCSs to detect genetic associations in the presence of two complicating phenomena: epistasis and genetic heterogeneity. However, LCSs are computationally demanding and problem scaling is a common concern. The goal of this paper was to apply and evaluate expert knowledge-guided covering and mutation operators within an LCS algorithm. Expert knowledge, in the form of Spatially Uniform ReliefF (SURF) scores, was incorporated to guide learning towards regions of the problem domain most likely to be of interest. This study demonstrates that expert knowledge can improve learning efficiency in the context of a Michigan-style LCS.

Keywords

Expert Knowledge Learning Classifier System Genetics Epistasis Heterogeneity Evolutionary Algorithm Mutation Covering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ryan J. Urbanowicz
    • 1
  • Delaney Granizo-Mackenzie
    • 1
  • Jason H. Moore
    • 1
  1. 1.Computational Genetics Laboratory, Department of GeneticsDartmouth Medical SchoolLebanonUSA

Personalised recommendations