Skip to main content

Pruning GP-Based Classifier Ensembles by Bayesian Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7491))

Abstract

Classifier ensemble techniques are effectively used to combine the responses provided by a set of classifiers. Classifier ensembles improve the performance of single classifier systems, even if a large number of classifiers is often required. This implies large memory requirements and slow speeds of classification, making their use critical in some applications. This problem can be reduced by selecting a fraction of the classifiers from the original ensemble. In this work, it is presented an ensemble-based framework that copes with large datasets, however selecting a small number of classifiers composing the ensemble. The framework is based on two modules: an ensemble-based Genetic Programming (GP) system, which produces a high performing ensemble of decision tree classifiers, and a Bayesian Network (BN) approach to perform classifier selection. The proposed system exploits the advantages provided by both techniques and allows to strongly reduce the number of classifiers in the ensemble. Experimental results compare the system with well-known techniques both in the field of GP and BN and show the effectiveness of the devised approach. In addition, a comparison with a pareto optimal strategy of pruning has been performed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banfield, R., Hall, L., Bowyer, K., Kegelmeyer, W.: Ensembles diversity measures and their application to thinning. Information Fusion 6, 49–62 (2005)

    Article  Google Scholar 

  2. Cantú-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary algorithms. IEEE Trans. on Evolutionary Computation 7(1), 54–68 (2003)

    Article  Google Scholar 

  3. Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Machine Learning 9(4), 309–347 (1992)

    MATH  Google Scholar 

  4. De Stefano, C., D’Elia, C., Scotto di Freca, A., Marcelli, A.: Classifier combination by bayesian networks for handwriting recognition. Int. Journal of Pattern Rec. and Artif. Intell. 23(5), 887–905 (2009)

    Article  Google Scholar 

  5. De Stefano, C., Fontanella, F., Marrocco, C., Scotto di Freca, A.: A Hybrid Evolutionary Algorithm for Bayesian Networks Learning: An Application to Classifier Combination. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 221–230. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Folino, G., Pizzuti, C., Spezzano, G.: Gp ensembles for large-scale data classification. IEEE Trans. on Evolutionary Computation 10(5), 604–616 (2006)

    Article  Google Scholar 

  7. Folino, G., Pizzuti, C., Spezzano, G.: Training distributed gp ensemble with a selective algorithm based on clustering and pruning for pattern classification. IEEE Trans. Evolutionary Computation 12(4), 458–468 (2008)

    Article  Google Scholar 

  8. Freund, Y., Shapire, R.: Proceedings of the 13th Int. Conference on Machine Learning

    Google Scholar 

  9. Gagné, C., Sebag, M., Schoenauer, M., Tomassini, M.: Ensemble learning for free with evolutionary algorithms? In: GECCO, pp. 1782–1789 (2007)

    Google Scholar 

  10. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience (2004)

    Google Scholar 

  11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann (1988)

    Google Scholar 

  12. Zhou, Z.H., Tang, W.: Selective Ensemble of Decision Trees. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 476–483. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Stefano, C., Folino, G., Fontanella, F., Scotto di Freca, A. (2012). Pruning GP-Based Classifier Ensembles by Bayesian Networks. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32937-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32936-4

  • Online ISBN: 978-3-642-32937-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics