Skip to main content

Public-Key Encryption with Lazy Parties

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7485))

Abstract

In a public-key encryption scheme, if a sender is not concerned about the security of a message and is unwilling to generate costly randomness, the security of the encrypted message can be compromised. This is caused by the laziness of the sender. In this work, we characterize lazy parties in cryptography. Lazy parties are regarded as honest parties in a protocol, but they are not concerned about the security of the protocol in a certain situation. In such a situation, they behave in an honest-looking way, and are unwilling to do a costly task. We study, in particular, public-key encryption with lazy parties. Specifically, as the first step toward understanding the behavior of lazy parties in public-key encryption, we consider a rather simple setting in which the costly task is to generate randomness used in algorithms, and parties can choose either costly good randomness or cheap bad randomness. We model lazy parties as rational players who behaves rationally to maximize their utilities, and define a security game between lazy parties and an adversary. A secure encryption scheme requires that the game is conducted by lazy parties in a secure way if they follow a prescribed strategy, and the prescribed strategy is a good equilibrium solution for the game. Since a standard secure encryption scheme does not work for lazy parties, we present some public-key encryption schemes that are secure for lazy parties.

Research supported in part by JSPS KAKENHI (23500010).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption) < < Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

    Google Scholar 

  2. Halpern, J.Y., Pass, R.: Game theory with costly computation. In: Innovations in Computer Science, pp. 120–142 (2010)

    Google Scholar 

  3. Katz, J.: Bridging Game Theory and Cryptography: Recent Results and Future Directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Dodis, Y., Rabin, T.: Cryptography and game theory. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.) Algorithmic Game Theory, pp. 181–207. Cambridge University Press (2007)

    Google Scholar 

  5. Halpern, J.Y.: Computer science and game theory. In: Durlauf, S.N., Blume, L.E. (eds.) The New Palgrave Dictionary of Economics. Palgrave Macmillan (2008)

    Google Scholar 

  6. Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation: extended abstract. In: Babai, L. (ed.) STOC, pp. 623–632. ACM (2004)

    Google Scholar 

  7. Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. In: Ruppert, E., Malkhi, D. (eds.) PODC, pp. 53–62. ACM (2006)

    Google Scholar 

  8. Dov Gordon, S., Katz, J.: Rational Secret Sharing, Revisited. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Kol, G., Naor, M.: Cryptography and game theory: Designing protocols for exchanging information. In: [23], pp. 320–339

    Google Scholar 

  10. Kol, G., Naor, M.: Games for exchanging information. In: Dwork, C. (ed.) STOC, pp. 423–432. ACM (2008)

    Google Scholar 

  11. Micali, S., Shelat, A.: Purely rational secret sharing (extended abstract). In: [24], pp. 54–71

    Google Scholar 

  12. Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.P.: Fairness with an honest minority and a rational majority. In: [24], pp. 36–53

    Google Scholar 

  13. Asharov, G., Lindell, Y.: Utility dependence in correct and fair rational secret sharing. J. Cryptology 24(1), 157–202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Asharov, G., Canetti, R., Hazay, C.: Towards a Game Theoretic View of Secure Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 426–445. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Groce, A., Katz, J.: Fair Computation with Rational Players. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: STOC, pp. 639–648 (1996)

    Google Scholar 

  17. Canetti, R., Ostrovsky, R.: Secure computation with honest-looking parties: What if nobody is truly honest (extended abstract). In: STOC, pp. 255–264 (1999)

    Google Scholar 

  18. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for realistic adversaries. Journal of Cryptology 23(2), 281–343 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dodis, Y., Ong, S.J., Prabhakaran, M., Sahai, A.: On the (im)possibility of cryptography with imperfect randomness. In: FOCS, pp. 196–205 (2004)

    Google Scholar 

  20. Bosley, C., Dodis, Y.: Does Privacy Require True Randomness? In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 1–20. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek, S.: Hedged Public-Key Encryption: How to Protect against Bad Randomness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient Rational Secret Sharing in Standard Communication Networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 419–436. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Canetti, R. (ed.): TCC 2008. LNCS, vol. 4948. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  24. Reingold, O. (ed.): TCC 2009. LNCS, vol. 5444. Springer, Heidelberg (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yasunaga, K. (2012). Public-Key Encryption with Lazy Parties. In: Visconti, I., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2012. Lecture Notes in Computer Science, vol 7485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32928-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32928-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32927-2

  • Online ISBN: 978-3-642-32928-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics