Dynamic Tabu Search for Non Stationary Social Network Identification Based on Graph Coloring

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 188)

Abstract

We introduce a new algorithm for the identification of Non Stationary Social Networks called Dynamic Tabu Search for Social Networks DTS-SN, that can analyze Social Networks by mapping them into a graph solving a Graph Coloring Problem (GCP). To map the Social Network into an unweighted undirected graph, to identify the users of the Social Networks, we construct a graph using the features that compound the Social Networks with a threshold that indicates if a pair of users have a relationship between them or not. We also take into account the dynamic behavior of the non stationary Social Network, where the relations between users change along time, adapting our algorithm in real time to the new structure of the Social Network.

Keywords

non stationary Social Networks Dynamic Tabu Search Graph Coloring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yegnanarayanan, V., UmaMaheswari, G.: Graph models for social relations. Electronic Notes in Discrete Mathematics 33(0), 101–108 (2009); International Conference on Graph Theory and its Applications. MathSciNetCrossRefGoogle Scholar
  2. 2.
    Sedano, J., Curiel, L., Corchado, E., delacal, E., Villar, J.R.: A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17(2), 103–115 (2010)Google Scholar
  3. 3.
    Corchado, E., Angel Arroyo, V.T.: Soft computing models to identify typical meteorological days. Logic Journal of the IGPL 19(2), 373–383 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Social Networks 31(2), 155–163 (2009)CrossRefGoogle Scholar
  5. 5.
    Zhao, P., Zhang, C.Q.: A new clustering method and its application in social networks. Pattern Recognition Letters 32(15), 2109–2118 (2011)CrossRefGoogle Scholar
  6. 6.
    Qiao, S., Li, T., Li, H., Peng, J., Chen, H.: A new blockmodeling based hierarchical clustering algorithm for web social networks. Engineering Applications of Artificial Intelligence 25(3), 640–647 (2012)CrossRefGoogle Scholar
  7. 7.
    Firat, A., Chatterjee, S., Yilmaz, M.: Genetic clustering of social networks using random walks. Computational Statistics & Data Analysis 51(12), 6285–6294 (2007)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Pekec, A., Roberts, F.S.: The role assignment model nearly fits most social networks. Mathematical Social Sciences 41(3), 275–293 (2001)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Lewis, R., Thompson, J., Mumford, C., Gillard, J.: A wide-ranging computational comparison of high-performance graph colouring algorithms. Computers & Operations Research 39(9), 1933–1950 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Alishahi, M.: On the dynamic coloring of graphs. Discrete Applied Mathematics 159(2), 152–156 (2011)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Johnson, D.S., Mehrotra, A., Trick, M. (eds.) Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, Ithaca, New York, USA (2002)Google Scholar
  12. 12.
    Johnson, D., Trick, M. (eds.): Proceedings of the 2nd DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society (1996)Google Scholar
  13. 13.
    Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Comput. Oper. Res. 33(9), 2547–2562 (2006)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Mehrotra, A., Trick, M.: A column generation approach for graph coloring. INFORMS Journal On Computing 8(4), 344–354 (1996)MATHCrossRefGoogle Scholar
  15. 15.
    Mizuno, K., Nishihara, S.: Toward ordered generation of exceptionally hard instances for graph 3-colorability. In: Discrete Applied Mathematics Archive, vol. 156, pp. 1–8 (January 2008)Google Scholar
  16. 16.
    Brèlaz, D.: New methods to color the vertices of a graph. Commun. ACM 22, 251–256 (1979)MATHCrossRefGoogle Scholar
  17. 17.
    Dutton, R.D., Brigham, R.C.: A new graph colouring algorithm. The Computer Journal 24(1), 85–86 (1981)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Corneil, D.G., Graham, B.: An algorithm for determining the chromatic number of a graph. SIAM J. Comput. 2(4), 311–318 (1973)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Ge, F., Wei, Z., Tian, Y., Huang, Z.: Chaotic ant swarm for graph coloring. In: 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), vol. 1, pp. 512–516 (2010)Google Scholar
  20. 20.
    Hsu, L.Y., Horng, S.J., Fan, P., Khan, M.K., Wang, Y.R., Run, R.S., Lai, J.L., Chen, R.J.: Mtpso algorithm for solving planar graph coloring problem. Expert Syst. 38, 5525–5531 (2011)CrossRefGoogle Scholar
  21. 21.
    Shi-Zheng Zhao, M., Willjuice Iruthayarajan, Zhao, S.-Z., Iruthayarajan, M.W., Baskar, S., Suganathan, P.N.: Multi-objective robust pid controller tuning using two lbests multi-objective particle swarm optimization. Information Science 181(16), 3323–3335 (2011)CrossRefGoogle Scholar
  22. 22.
    Rebollo, I., Graña, M.: Gravitational Swarm Approach for Graph Coloring. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds.) NICSO 2011. SCI, vol. 387, pp. 159–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Rebollo, I., Graña, M.: Further results of gravitational swarm intelligence for graph coloring. In: Nature and Biologically Inspired Computing (2011)Google Scholar
  24. 24.
    Rebollo, I., Graña, M., Hernandez, C.: Aplicacion de algoritmos estocosticos de optimizacion al problema de la disposicion de objetos no-convexos. Revista Investigacion Operacional 22(2), 184–191 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Israel Rebollo Ruiz at Informática 68 Investigación y Desarrollo S.L., Computational Intelligence GroupUniversity of the Basque CountryAlavaSpain
  2. 2.Manuel Grańa Romay at Computational Intelligence GroupUniversity of the Basque CountryAlavaSpain

Personalised recommendations