Viscosity Measurement Monitoring by Means of Functional Approximation and Rule Based Techniques

  • Ramón Ferreiro-García
  • José Luis Calvo-Rolle
  • F. Javier Pérez Castelo
  • Manuel Romero Gómez
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 188)


A diagnosis strategy using neural network based functional approximation models associated to a rule based technique is developed. The aim is to apply the diagnostic task on condition monitoring of viscometers used in liquids handling (liquid fuels and lubricating oils) tasks. Based on fluid online measured data, including pressures and temperature, the viscometers diagnosis is being carried out. Required signals are achieved by conversion of available or measured data (fluid temperature and API and SAE grades) into virtual data by means of neural network functional approximation techniques. Using rule based techniques on fault finding and isolation task, it is concluded that the viscometer monitoring task carried out by the analysis of the dynamic behaviour of both, the on line viscometer and virtual data subjected to the analysis of residuals into a parity space approach, is successfully feasible.


Backpropagation feedforward NNs Conjugate gradient Diagnosis Functional approximation Functional redundancy Parity spaces Residual generation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmelzer, J.W.P., Zanotto, E.D., Fokin, V.M.: Fokin, Pressure dependence of viscosity. The Journal of Chemical Physic 122, 74511 (2005)CrossRefGoogle Scholar
  2. 2.
    Rajagopal, K.R.: On implicit constitutive theories for fluids. J. Fluid Mech. 550, 243–249 (2006)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Renardy, M.: Parallel shear flows of fluids with a pressure-dependent viscosity. J. Non-Newtonian Fluid Mech. 114, 229–236 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Denn, M.M.: Polymer Melt Processing. Cambridge University Press, Cambridge (2008)Google Scholar
  5. 5.
    Stokes, G.G.: On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Camb. Philos. Soc. 8, 287–305 (1845)Google Scholar
  6. 6.
    Barus, C.: Isothermals, isopiestics and isometrics relative to viscosity. Am. J. Sci. 45, 87–96 (1893)Google Scholar
  7. 7.
    Noltingk, B.E. (ed.): Instrumentation Reference Book. Buterworth and Co. (Publishers) Ltd., London (1988)Google Scholar
  8. 8.
    Medina, M.A., Theilliol, D., Astorga, C.M., Guerrero, G., Vela, L.G.: Fault diagnosis based on a decoupled filter for nonlinear systems represented in a multi-models approach. Dyna-Colombia 162, 313–323 (2010)Google Scholar
  9. 9.
    Fine, T.L.: Feedforward Neural Network Methodology. Springer-Verlag New York. Inc. (1999)Google Scholar
  10. 10.
    Tang, H., Tan, K.C., Yi, Z.: Neural Networks: Computational Models and Applications. Springer, Heidelberg (2007)MATHCrossRefGoogle Scholar
  11. 11.
    Fletcher, R., Reeves, C.M.: Function minimisation by conjugate gradients. Computer Journal 7, 149–154 (1964)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Irigoyen, E., Larrea, M., Valera, J., Gómez, V., Artaza, F.: A Neuro-genetic Control Scheme Application for Industrial R 3 Workspaces. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010, Part I. LNCS(LNAI), vol. 6076, pp. 343–350. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Gómez-Garay, V., Irigoyen, E., Artaza, F.: GENNET-Toolbox: An Evolving Genetic Algorithm for Neural Network Training. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010, Part I. LNCS (LNAI), vol. 6076, pp. 368–375. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Rutkowski, L.: New Soft Computing Techniques for System Modelling. In: Pattern Classification and Image Processing. Springer, Berlin (2004)Google Scholar
  15. 15.
    Corchado, E., Graña, M., Wozniak, M.: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)CrossRefGoogle Scholar
  16. 16.
    García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 180(10), 2044–2064 (2010)CrossRefGoogle Scholar
  17. 17.
    Corchado, E., Abraham, A., Carvalho, A.: Hybrid intelligent algorithms and applications. Information Sciences 180(14), 2633–2634 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pedrycz, W., Aliev, R.: Logic-oriented neural networks for fuzzy neurocomputing. Neurocomputing 73(1-3), 10–23 (2009)CrossRefGoogle Scholar
  19. 19.
    Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729–2730 (2009)CrossRefGoogle Scholar
  20. 20.
    Hong, S.J., May, G.: Neural Network-Based Real-Time Malfunction Diagnosis of Reactive Ion Etching Using In Situ Metrology Data. IEEE Transactions on Semiconductor Manufacturing 17(3), 408–421 (2004)CrossRefGoogle Scholar
  21. 21.
    Garcia, R.F., De Miguel Catoira, A., Sanz, B.F.: FDI and Accommodation Using NN Based Techniques. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010, Part I. LNCS (LNAI), vol. 6076, pp. 395–404. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Abraham, A.: Hybrid Soft Computing and Applications. International Journal of Computational Intelligence and Applications 8(1), 5–7 (2009)CrossRefGoogle Scholar
  23. 23.
    Corchado, E., Arroyo, A., Tricio, V.: Soft computing models to identify typical meteorological days. Logic Journal of the IGPL 19(2), 373–383 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhao, S.-Z., Iruthayarajan, M.W., Baskar, S., Suganthan, P.N.: Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization. Inf. Sci. 181(16), 3323–3335 (2011)CrossRefGoogle Scholar
  25. 25.
    Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.R.: A soft computing method for detecting lifetime building thermal insulation failures. In: Integrated Computer-Aided Engineering, vol. 17(2), pp. 103–115. IOS Press (2010)Google Scholar
  26. 26.
    Rondón, E., Carrillo, J., Correa, R.: Magnetic levitation in fluids of high viscosity and density. Dyna-Colombia 162, 387–395 (2010)Google Scholar
  27. 27.
    David, J., Henao, V.: Neuroscheme: A modeling language for artificial neural networks. Dyna-Colombia 147, 75–82 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ramón Ferreiro-García
    • 1
  • José Luis Calvo-Rolle
    • 2
  • F. Javier Pérez Castelo
    • 2
  • Manuel Romero Gómez
    • 1
  1. 1.Department of Industrial EngineeringUniversity of CoruñaA CoruñaSpain
  2. 2.Department of Industrial EngineeringUniversity of CoruñaFerrol, A CoruñaSpain

Personalised recommendations