Advertisement

A Hybrid Soft Computing Approach for Optimizing Design Parameters of Electrical Drives

  • Alexandru-Ciprian Zăvoianu
  • Gerd Bramerdorfer
  • Edwin Lughofer
  • Siegfried Silber
  • Wolfgang Amrhein
  • Erich Peter Klement
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 188)

Abstract

In this paper, we are applying a hybrid soft computing approach for optimizing the performance of electrical drives where many degrees of freedom are allowed in the variation of design parameters. The hybrid nature of our approach originates from the application of multi-objective evolutionary algorithms (MOEAs) to solve the complex optimization problems combined with the integration of non-linear mappings between design and target parameters. These mappings are based on artificial neural networks (ANNs) and they are used for the fitness evaluation of individuals (design parameter vectors). The mappings substitute very time-intensive finite element simulations during a large part of the optimization run. Empirical results show that this approach finally reduces the computation time for single runs from a few days to several hours while achieving Pareto fronts with a similar high quality.

Keywords

hybrid soft computing methods multi-objective genetic algorithms feed-forward artificial neural networks electrical drives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729–2730 (2009)CrossRefGoogle Scholar
  2. 2.
    Alaya, I., Solnon, C., Ghedira, K.: Ant colony optimization for multi-objective optimization problems. In: 19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007, vol. 1, pp. 450–457 (2007)Google Scholar
  3. 3.
    De Keulenaer, H., Belmans, R., Blaustein, E., Chapman, D., De Almeida, A., De Wachter, B., Radgen, P.: Energy efficient motor driven systems. Tech. rep., European Copper Institute (2004)Google Scholar
  4. 4.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons, Chichester (2001)MATHGoogle Scholar
  5. 5.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  6. 6.
    Duan, Y., Ionel, D.: A review of recent developments in electrical machine design optimization methods with a permanent magnet synchronous motor benchmark study. In: 2011 IEEE Conference on Energy Conversion Congress and Exposition (ECCE), pp. 3694–3701 (September 2011)Google Scholar
  7. 7.
    Durillo, J.J., Nebro, A.J.: JMETAL: A java framework for multi-objective optimization. Advances in Engineering Software 42, 760–771 (2011)CrossRefGoogle Scholar
  8. 8.
    European Union: Regulation (eg) nr. 640/2009Google Scholar
  9. 9.
    Fleischer, M.: The Measure of Pareto Optima. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Grosan, C., Abraham, A.: Intelligent Systems: A Modern Approach. Intelligent Systems Reference Library Series. Springer, Germany (2011) ISBN 978-3-642-21003-7MATHGoogle Scholar
  11. 11.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)CrossRefGoogle Scholar
  12. 12.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall Inc., Upper Saddle River (1999)MATHGoogle Scholar
  13. 13.
    Hong, Y.S., Lee, H., Tahk, M.J.: Acceleration of the convergence speed of evolutionary algorithms using multi-layer neural networks. Engineering Optimization 35(1), 91–102 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)CrossRefGoogle Scholar
  15. 15.
    Jannot, X., Vannier, J., Marchand, C., Gabsi, M., Saint-Michel, J., Sadarnac, D.: Multiphysic modeling of a high-speed interior permanent-magnet synchronous machine for a multiobjective optimal design. IEEE Transactions on Energy Conversion 26(2), 457–467 (2011)CrossRefGoogle Scholar
  16. 16.
    Paliwal, M., Kumar, U.A.: Neural networks and statistical techniques: A review of applications. Expert Systems with Applications 36(1), 2–17 (2009)CrossRefGoogle Scholar
  17. 17.
    del Valle, Y., Venayagamoorthy, G., Mohagheghi, S., Hernandez, J.C., Harley, R.: Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Transactions on Evolutionary Computation 12(2), 171–195 (2008)CrossRefGoogle Scholar
  18. 18.
    Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. thesis, Harvard University (1974)Google Scholar
  19. 19.
    Zhao, S.Z., Iruthayarajan, M.W., Baskar, S., Suganthan, P.: Multi-objective robust pid controller tuning using two lbests multi-objective particle swarm optimization. Information Sciences 181(16), 3323–3335 (2011)CrossRefGoogle Scholar
  20. 20.
    Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: IEEE Congress on Evolutionary Computation, CEC 2006, pp. 892–899 (2006)Google Scholar
  21. 21.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Giannakoglou, K., et al. (eds.) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001). International Center for Numerical Methods in Engineering (CIMNE), pp. 95–100 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexandru-Ciprian Zăvoianu
    • 1
    • 3
  • Gerd Bramerdorfer
    • 2
    • 3
  • Edwin Lughofer
    • 1
  • Siegfried Silber
    • 2
    • 3
  • Wolfgang Amrhein
    • 2
    • 3
  • Erich Peter Klement
    • 1
    • 3
  1. 1.Department of Knowledge-based Mathematical Systems/Fuzzy Logic Laboratorium Linz-HagenbergJohannes Kepler University of LinzLinzAustria
  2. 2.Institute for Electrical Drives and Power ElectronicsJohannes Kepler University of LinzLinzAustria
  3. 3.ACCM, Austrian Center of Competence in MechatronicsLinzAustria

Personalised recommendations