A Statistical Classifier for Assessing the Level of Stress from the Analysis of Interaction Patterns in a Touch Screen

  • Davide Carneiro
  • Paulo Novais
  • Marco Gomes
  • Paulo Moura Oliveira
  • José Neves
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 188)

Abstract

This paper describes an approach for assessing the level of stress of users of mobile devices with tactile screens by analysing their touch patterns. Two features are extracted from touches: duration and intensity. These features allow to analyse the intensity curve of each touch. We use decision trees (J48) and support vector machines (SMO) to train a stress detection classifier using additional data collected in previous experiments. This data includes the amount of movement, acceleration on the device, cognitive performance, among others. In previous work we have shown the co-relation between these parameters and stress. Both algorithms show around 80% of correctly classified instances. The decision tree can be used to classify, in real time, the touches of the users, serving as an input to the assessment of the stress level.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carneiro, D., Montotya, J.C.C., Novais, P., Fernández-Caballero, A., Neves, J., Bonal, M.T.L.: Stress Monitoring in Conflict Resolution Situations. In: Novais, P., Hallenborg, K., Tapia, D.I., Rodríguez, J.M.C. (eds.) Ambient Intelligence - Software and Applications. AISC, vol. 153, pp. 137–144. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Carneiro, D., Novais, P., Costa, R., Neves, J.: Enhancing the Role of Multi-agent Systems in the Development of Intelligent Environments. In: Demazeau, Y., Dignum, F., Corchado, J.M., Bajo, J., Corchuelo, R., Corchado, E., Fernández-Riverola, F., Julián, V.J., Pawlewski, P., Campbell, A. (eds.) Trends in PAAMS. AISC, vol. 71, pp. 123–130. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)Google Scholar
  4. 4.
    Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning (1998)Google Scholar
  5. 5.
    Holmes, G., Donkin, A., Witten, I.H.: Weka: A machine learning workbench. In: Proc. Second Australia and New Zealand Conference on Intelligent Information Systems, Brisbane, Australia (1994)Google Scholar
  6. 6.
    Selye, H.: The stress of life, vol. 5. McGraw-Hill paperbacks. McGraw-Hill (1956)Google Scholar
  7. 7.
    Hong, J.-Y., Suh, E.-H., Kim, S.-J.: Context-aware systems: A literature review and classification. Expert Systems with Applications 36(4), 8509–8522 (2009)CrossRefGoogle Scholar
  8. 8.
    Jiang, X., Chen, N.Y., Hong, J.I., Wang, K., Takayama, L., Landay, J.A.: Siren: Context-aware Computing for Firefighting. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 87–105. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Shin, C., Woo, W.: Conflict Resolution Method Utilizing Context History for Context-Aware Applications. Cognitive Science Research (577), 105–110 (2005)Google Scholar
  10. 10.
    Picard, R.W.: Affective computing. MITPress, Cambridge (1997)Google Scholar
  11. 11.
    Abraham, A.: Hybrid Soft Computing and Applications. International Journal of Computational Intelligence and Applications 8(1), 5–7 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Davide Carneiro
    • 1
  • Paulo Novais
    • 1
  • Marco Gomes
    • 1
  • Paulo Moura Oliveira
    • 2
  • José Neves
    • 1
  1. 1.Department of InformaticsUniversity of MinhoMinhoPortugal
  2. 2.University of Tras-os-Montes e Alto DouroVila RealPortugal

Personalised recommendations