Multi-Objective Differential Evolution on the GPU with C-CUDA

  • Fernando Bernardes de Oliveira
  • Donald Davendra
  • Frederico Gadelha Guimarães
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 188)


In some applications, evolutionary algorithms may require high computational resources and high processing power, sometimes not producing a satisfactory solution after running for a considerable amount of time. One possible improvement is a parallel approach to reduce the response time. This work proposes to study a parallel multi-objective algorithm, the multi-objective version of Differential Evolution (DE). The generation of trial individuals can be done in parallel, greatly reducing the overall processing time of the algorithm. A novel approach to parallelize this algorithm is the implementation on the Graphic Processing Units (GPU). These units present high degree of parallelism and they were initially developed for image rendering. However, NVIDIA has released a framework, named CUDA, which allows developers to use GPU for general-purpose computing (GPGPU). This work studies the implementation of Multi-Objective DE (MODE) on the GPU with C-CUDA, evaluating the gain in processing time against the sequential version. Benchmark functions are used to validate the implementation and to confirm the efficiency of MODE on the GPU. The results show that the approach achieves an expressive speed up and a highly efficient processing power.


Multi-Objective problem Differential Evolution GPU C-CUDA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nedjah, N., de Macedo Mourelle, L., Alba, E. (eds.): Parallel Evolutionary Computations. SCI, vol. 22. Springer (2006)Google Scholar
  2. 2.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical approach to global optimizations. Springer (2005)Google Scholar
  3. 3.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast Elitist Multi-Objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2000)CrossRefGoogle Scholar
  4. 4.
    Xue, F., Sanderson, A., Graves, R.: Pareto-based multi-objective differential evolution. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 2, pp. 862–869 (December 2003)Google Scholar
  5. 5.
    Xue, F.: Multi-objective Differential Evolution: Theory and Applications. PhD thesis, Rensselaer Polytechnic Institute, New York (September 2004)Google Scholar
  6. 6.
    Robič, T., Filipič, B.: DEMO: Differential Evolution for Multiobjective Optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    NVIDIA: CUDA C Programming Guide. 4.0 edn. NVIDIA (June 2011)Google Scholar
  8. 8.
    de Veronese, L., Krohling, R.: Differential evolution algorithm on the GPU with C-CUDA. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7 (July 2010)Google Scholar
  9. 9.
    Fabris, F., Krohling, R.A.: A co-evolutionary differential evolution algorithm for solving min-max optimization problems implemented on GPU using C-CUDA. Expert Systems with Applications (2011)Google Scholar
  10. 10.
    Zhu, W., Yaseen, A., Li, Y.: DEMCMC-GPU: An Efficient Multi-Objective Optimization Method with GPU Acceleration on the Fermi Architecture. New Generation Computing 29, 163–184 (2011), doi:10.1007/s00354-010-0103-yCrossRefGoogle Scholar
  11. 11.
    NVIDIA: NVIDIA cuRAND (January 2012),
  12. 12.
    Coello Coello, C.A.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Computational Intelligence Magazine 1(1), 28–36 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8, 173–195 (2000)CrossRefGoogle Scholar
  14. 14.
    Batista, L.S., Campelo, F., Guimarães, F.G., Ramírez, J.A.: Pareto Cone ε-Dominance: Improving Convergence and Diversity in Multiobjective Evolutionary Algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 76–90. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fernando Bernardes de Oliveira
    • 1
    • 2
  • Donald Davendra
    • 3
  • Frederico Gadelha Guimarães
    • 4
  1. 1.Universidade Federal de Ouro PretoJoão MonlevadeBrazil
  2. 2.Graduate Program in Electrical EngineeringUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Department of Computer ScienceVSB Technical University of OstravaOstravaCzech Republic
  4. 4.Department of Electrical EngineeringUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations