Flower Pollination Algorithm for Global Optimization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7445)


Flower pollination is an intriguing process in the natural world. Its evolutionary characteristics can be used to design new optimization algorithms. In this paper, we propose a new algorithm, namely, flower pollination algorithm, inspired by the pollination process of flowers. We first use ten test functions to validate the new algorithm, and compare its performance with genetic algorithms and particle swarm optimization. Our simulation results show the flower algorithm is more efficient than both GA and PSO. We also use the flower algorithm to solve a nonlinear design benchmark, which shows the convergence rate is almost exponential.


Genetic Algorithm Particle Swarm Optimization Global Minimum Multiobjective Optimization Local Pollination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackley, D.H.: A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic Publishers (1987)Google Scholar
  2. 2.
    Cagnina, L.C., Esquivel, S.C., Coello, C.A.: Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32, 319–326 (2008)zbMATHGoogle Scholar
  3. 3.
    Chittka, L., Thomson, J.D., Waser, N.M.: Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86, 361–377 (1999)CrossRefGoogle Scholar
  4. 4.
    Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Scheiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Springer (1999)Google Scholar
  5. 5.
  6. 6.
    Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with Computers 27, article (2011), doi:10.1007/s00366-011-0241-yGoogle Scholar
  7. 7.
    Glover, B.J.: Understanding Flowers and Flowering: An Integrated Approach. Oxford University Press (2007)Google Scholar
  8. 8.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimisation and Machine Learning. Addison Wesley, Reading (1989)Google Scholar
  9. 9.
    Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Anbor (1975)Google Scholar
  10. 10.
    Kazemian, M., Ramezani, Y., Lucas, C., Moshiri, B.: Swarm Clustering Based on Flowers Pollination by Artificial Bees. In: Abraham, A., Grosan, C., Ramos, V. (eds.) Swarm Intelligence in Data Mining. SCI, vol. 34, pp. 191–202. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)Google Scholar
  12. 12.
    Kennedy, J., Eberhart, R., Shi, Y.: Swarm intelligence. Academic Press (2001)Google Scholar
  13. 13.
    Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Computational Physics 226, 1830–1844 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Wikipedia article on pollination,
  15. 15.
    Reynolds, A.M., Frye, M.A.: Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS One 2, e354 (2007)Google Scholar
  16. 16.
    Walker, M.: How flowers conquered the world. BBC Earth News (July 10, 2009),
  17. 17.
    Waser, N.M.: Flower constancy: definition, cause and measurement. The American Naturalist 127(5), 596–603 (1986)CrossRefGoogle Scholar
  18. 18.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)Google Scholar
  19. 19.
    Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Computation 2(2), 78–84 (2010)CrossRefGoogle Scholar
  20. 20.
    Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley (2010)Google Scholar
  21. 21.
    Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Oily Fossils provide clues to the evolution of flowers. Science Daily (April 5, 2001),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations