Reasoning Theory for D3L with Compositional Bridge Rules

  • Xiaofei Zhao
  • Dongping Tian
  • Limin Chen
  • Zhongzhi Shi
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 385)


The semantic mapping in Distributed Dynamic Description Logics (D3L) allows knowledge to propagate from one ontology to another. The current research for knowledge propagation in D3L is only for a simplified case when only two ontologies are involved. In this paper we study knowledge propagation in more complex cases. We find in the case when more than two ontologies are involved and bridge rules form chains, knowledge does not always propagate along chains of bridge rules even if we would expect it. Inspired by Package-based description Logics, we extend the original semantics of D3L by imposing so called compositional consistency condition on domain relations in D3L interpretations. Under this semantics knowledge propagates along chains of bridge rules correctly. Furthermore we provide a distributed Tableaux reasoning algorithm for deciding satisfiability of concepts which is decidable in D3L under compositional consistency. Compared with original one, the extended D3L provides more reasonable logic foundation for distributed, dynamic system such as the information integration system and the Semantic Web.


Distributed Dynamic Description Logics(D3L) Knowledge Propagation Compositional Consistency Bridge Rule Chain 


  1. 1.
    Shi, Z., Dong, M., Jiang, Y., et al.: A Logic Foundation for the Semantic Web. Science in China, Series F Information Sciences 48(2), 161–178 (2005)CrossRefGoogle Scholar
  2. 2.
    Shi, Z., Jiang, Y., Zhang, H., et al.: Agent service matchmaking based on description logic. Chinese Journal of Computers 27(5), 625–635 (2004) (in Chinese)Google Scholar
  3. 3.
    Jiang, Y., Shi, Z., Tang, Y., et al.: A Distributed Dynamic Description Logic. Journal of Computer Research and Development 43(9), 1603–1608 (2006) (in Chinese)CrossRefGoogle Scholar
  4. 4.
    Wang, Z.: Distributed Information Retrieval Oriented Automatic Reasoning. Doctor’s thesis. Institute of Computing Technology. Chinese Academy of Sciences, Beijing (2010)Google Scholar
  5. 5.
    Bao, J., Caragea, D., Honavar, V.G.: On the Semantics of Linking and Importing in Modular Ontologies. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 72–86. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Franz, B., Diego, C., Deborah, M., et al.: The description logic handbook: Theory, implementation, and applications, 2nd edn. Cambridge University Press, Cambridge (2007)MATHGoogle Scholar
  7. 7.
    d’Aquin, M., Schlicht, A., Stuckenschmidt, H., Sabou, M.: Criteria and Evaluation for Ontology Modularization Techniques. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 67–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Bao, J., Caragea, D., Honavar, V.G.: A distributed tableau algorithm for package-based description logics. In: 2nd International Workshop on Context Representation and Reasoning. IOS Press, Italy (2008)Google Scholar
  9. 9.
    Grau, B.C., Parsia, B., Sirin, E.: Combining OWL ontologies using Ɛ-connections. Journal of Web Semantics 4(1), 40–59 (2006)CrossRefGoogle Scholar
  10. 10.
    Cuenca Grau, B., Parsia, B., Sirin, E.: Ontology Integration Using ε-Connections. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 293–320. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Kutz, O., Lutz, C., Wolter, F., et al.: Ɛ -connections of abstract description systems. Articial Intelligence 156(1), 1–73 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Bao, J., Voutsadakis, G., Slutzki, G., Honavar, V.: Package-Based Description Logics. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 349–371. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description logics. In: Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 453–458. AAAI Press, California (2007)Google Scholar
  14. 14.
    Serafini, L., Borgida, A., Tamilin, A.: Aspects of Distributed and Modular Ontology Reasoning. In: Tenth International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 570–575. AAAI Press, California (2005)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Xiaofei Zhao
    • 1
  • Dongping Tian
    • 1
  • Limin Chen
    • 2
  • Zhongzhi Shi
    • 1
  1. 1.Key Laboratory of Intelligent Information Processing, Institute of Computing TechnologyChinese Academy of SciencesBeijingChina
  2. 2.Research Institute of China UnicomBeijingChina

Personalised recommendations