Probabilistic Optimization of Semantic Process Model Matching

  • Henrik Leopold
  • Mathias Niepert
  • Matthias Weidlich
  • Jan Mendling
  • Remco Dijkman
  • Heiner Stuckenschmidt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7481)

Abstract

Business process models are increasingly used by companies, often yielding repositories of several thousand models. These models are of great value for business analysis such as service identification or process standardization. A problem is though that many of these analyses require the pairwise comparison of process models, which is hardly feasible to do manually given an extensive number of models. While the computation of similarity between a pair of process models has been intensively studied in recent years, there is a notable gap on automatically matching activities of two process models. In this paper, we develop an approach based on semantic techniques and probabilistic optimization. We evaluate our approach using a sample of admission processes from different universities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business process models: Metrics and evaluation. Information Systems 36, 498–516 (2010)CrossRefGoogle Scholar
  2. 2.
    Grigori, D., Corrales, J.C., Bouzeghoub, M., Gater, A.: Ranking bpel processes for service discovery. IEEE T. Services Computing 3(3), 178–192 (2010)CrossRefGoogle Scholar
  3. 3.
    Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net similarity measure based on transition adjacency relations. Computers in Industry 61(5), 463–471 (2010)CrossRefGoogle Scholar
  4. 4.
    Becker, M., Laue, R.: A comparative survey of business process similarity measures. Computers in Industry 63(2), 148–167 (2012)CrossRefGoogle Scholar
  5. 5.
    Niemann, M., Siebenhaar, M., Schulte, S., Steinmetz, R.: Comparison and retrieval of process models using related cluster pairs. Computers in Industry 63(2), 168–180 (2012)CrossRefGoogle Scholar
  6. 6.
    Kunze, M., Weidlich, M., Weske, M.: Behavioral Similarity – A Proper Metric. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 166–181. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Dijkman, R., Dumas, M., García-Bañuelos, L., Käärik, R.: Aligning business process models. In: IEEE International EDOC Conference 2009, pp. 45–53 (2009)Google Scholar
  8. 8.
    Weidlich, M., Dijkman, R., Mendling, J.: The ICoP Framework: Identification of Correspondences between Process Models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business process models. In: Roddick, J., Hinze, A. (eds.) Proceedings of the Fourth Asia-Pacific Conference on Conceptual Modelling (APCCM 2007), vol. 67, pp. 71–80. Australian Computer Science Communications, Ballarat (2007)Google Scholar
  10. 10.
    Mendling, J., Reijers, H.A., Recker, J.: Activity labeling in process modeling: Empirical insights and recommendations. Inf. Syst. 35(4), 467–482 (2010)CrossRefGoogle Scholar
  11. 11.
    Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in business process models. Information Systems 37(5), 443–459 (2012)CrossRefGoogle Scholar
  12. 12.
    Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  13. 13.
    Lee, J.H., Kim, M.H., Lee, Y.J.: Information retrieval based on conceptual distance in is-a hierarchies. Journal of Documentation 49(2), 188–207 (1993)CrossRefGoogle Scholar
  14. 14.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics 19(1), 17–30 (1989)CrossRefGoogle Scholar
  15. 15.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: 14th International Joint Conference on Artificial Intelligence, vol. 1, pp. 448–453. Morgan Kaufmann Publishers Inc. (1995)Google Scholar
  16. 16.
    Lin, D.: An Information-Theoretic Definition of Similarity. In: Proceedings of the Fifteenth International Conference on Machine Learning (ICML 1998), pp. 296–304. Morgan Kaufmann, San Francisco (1998), http://dl.acm.org/citation.cfm?id=645527.657297 Google Scholar
  17. 17.
    Gal, A.: Uncertain Schema Matching. Synthesis Lectures on Data Management. Morgan & Claypool Publishers (2011)Google Scholar
  18. 18.
    Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on behavioral profiles of process models. IEEE Trans. Software Eng. 37(3), 410–429 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136 (2006)CrossRefGoogle Scholar
  20. 20.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)Google Scholar
  21. 21.
    Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press (2007)Google Scholar
  22. 22.
    Manning, C.D., Schütze, H.: Foundations of statistical natural language processing. MIT Press (1999)Google Scholar
  23. 23.
    Niepert, M., Meilicke, C., Stuckenschmidt, H.: A Probabilistic-Logical Framework for Ontology Matching. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (2010)Google Scholar
  24. 24.
    Noessner, J., Niepert, M.: CODI: Combinatorial Optimization for Data Integration–Results for OAEI 2010. In: Proceedings of the 5th Workshop on Ontology Matching (2010)Google Scholar
  25. 25.
    Meilicke, C., Stuckenschmidt, H.: Analyzing mapping extraction approaches. In: Proceedings of the Workshop on Ontology Matching (2007)Google Scholar
  26. 26.
    Riedel, S.: Improving the accuracy and efficiency of MAP inference for Markov logic. In: Proc. of UAI 2008, pp. 468–475 (2008)Google Scholar
  27. 27.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)Google Scholar
  28. 28.
    Doan, A., Halevy, A.Y.: Semantic integration research in the database community: A brief survey. AI Magazine 26(1), 83–94 (2005)Google Scholar
  29. 29.
    Noy, N.F.: Semantic integration: A survey of ontology-based approaches. SIGMOD Record 33(4), 65–70 (2004)CrossRefGoogle Scholar
  30. 30.
    Giunchiglia, F., Shvaiko, P.: Semantic matching. The Knowledge Engineering Review Journal 18(3), 265–280 (2003)CrossRefGoogle Scholar
  31. 31.
    Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic Matching: Algorithms and Implementation. In: Spaccapietra, S., Atzeni, P., Fages, F., Hacid, M.-S., Kifer, M., Mylopoulos, J., Pernici, B., Shvaiko, P., Trujillo, J., Zaihrayeu, I. (eds.) Journal on Data Semantics IX. LNCS, vol. 4601, pp. 1–38. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Henrik Leopold
    • 1
  • Mathias Niepert
    • 2
  • Matthias Weidlich
    • 3
  • Jan Mendling
    • 4
  • Remco Dijkman
    • 5
  • Heiner Stuckenschmidt
    • 2
  1. 1.Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Universität MannheimMannheimGermany
  3. 3.Technion - Israel Institute of TechnologyHaifaIsrael
  4. 4.Wirtschaftsuniversität WienViennaAustria
  5. 5.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations