Skip to main content

Integrative and Reductionist Approaches to Modeling of Control of Breathing

  • Chapter
  • First Online:
Mathematical Modeling and Validation in Physiology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2064))

  • 2314 Accesses

Abstract

Integration and reductionism represent two different modeling approaches in understanding the working mechanism of a system. Traditionally, biological modeling has relied on reductionism, which has the advantage of decomposing the intrinsic complexity of biological systems into smaller subsystems to ease understanding. However, as more information accumulates, it becomes increasingly difficult to integrate these components systematically to explain more complex behavior, particularly when multiple determining factors co-exist. In this chapter, we compare the reductionist and integrative views of biological modeling. The value of integrative modeling is discussed from the perspective of engineering and physics point of view. The need for an integrative approach is illustrated in the context of respiratory control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, A.C., Tewari, M., Poon, C.S., Phillips, R.S.: The limits of reductionism in medicine: could systems biology offer an alternative? PLoS Med. 3(6), e208 (2006)

    Article  Google Scholar 

  2. Cannon, W.B.: The Wisdom of the Body. W.W. Norton & Company, New York (1932)

    Google Scholar 

  3. Cherniack, N.: Potential role of optimization in alveolar hypoventilation and respiratory instability. In: von Euler, C., Lagercrantz, H. (eds.) Neurobiology of the control of breathing. Wenner-Gren International Symposium Series, pp. 45–50. Raven Press, New York (1987)

    Google Scholar 

  4. Eldridge, F.L., Morin, D., Romaniuk, J.R., Yamashiro, S., Potts, J.T., Ichiyama, R.M., Bell, H., Phillipson, E.A., Killian, K.J., Jones, N.L., Nattie, E.: Supraspinal locomotor centers do/do not contribute significantly to the hyperpnea of dynamic exercise in humans. J. Appl. Physiol. 100(5), 1743–1747 (2006)

    Article  Google Scholar 

  5. Gerlai, R.: Gene targeting: technical confounds and potential solutions in behavioral brain research. Behav. Brain Res. 125(1-2), 13–21 (2001)

    Article  Google Scholar 

  6. Ghazanshahi, S.D., Khoo, M.C.: Optimal ventilatory patterns in periodic breathing. Ann. Biomed. Eng. 21(5), 517–30 (1993)

    Article  Google Scholar 

  7. Haouzi, P.: Theories on the nature of the coupling between ventilation and gas exchange during exercise. Respir Physiol Neurobiol. 151(2–3), 267–279 (2006)

    Article  Google Scholar 

  8. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  9. Horig, H., Marincola, E., Marincola, F.M.: Obstacles and opportunities in translational research. Nat. Med. 11(7), 705–708 (2005)

    Article  Google Scholar 

  10. Hunter, P.J., Borg, T.K.: Integration from proteins to organs: the physiome project. Nat. Rev. Mol. Cell Biol. 4(3), 237–243 (2003)

    Article  Google Scholar 

  11. Khoo, M.C., Kronauer, R.E., Strohl, K.P., Slutsky, A.S.: Factors inducing periodic breathing in humans: a general model. J. Appl. Physiol. 53(3), 644–659 (1982)

    Google Scholar 

  12. Lazebnik, Y.: Can a biologist fix a radio? – or, what I learned while studying apoptosis. Canc. Cell 2(3), 179–182 (2002)

    Article  MathSciNet  Google Scholar 

  13. Mankoff, S.P., Brander, C., Ferrone, S., Marincola, F.M.: Lost in translation: Obstacles to translational medicine. J. Transl. Med. 2(1), 14 (2004)

    Article  Google Scholar 

  14. Mateika, J.H., Duffin, J.: A review of the control of breathing during exercise. Eur. J. Appl. Physiol. Occup. Physiol. 71(1), 1–27 (1995)

    Article  Google Scholar 

  15. Mead, J.: Control of respiratory frequency. J. Appl. Physiol. 15, 325–336 (1960)

    Google Scholar 

  16. Mitchell, G.S., Babb, T.G.: Layers of exercise hyperpnea: modulation and plasticity. Respir. Physiol. Neurobiol. 151(2-3), 251–266 (2006)

    Article  Google Scholar 

  17. Ogata, K.: Modern Control Engineering. Prentice Hall, Englewood Cliffs, New Jersey (1997)

    Google Scholar 

  18. Ortoleva, P., Adhangale, P., Cheluvaraja, S., Fontus, M., Shreif, Z.: Deriving principles of microbiology by multiscaling laws of molecular physics. IEEE Eng. Med. Biol. Mag. 28(2), 70–79 (2009)

    Article  Google Scholar 

  19. Poon, C.S.: Optimal control of ventilation in hypoxia, hypercapnia and exercise. In: Whipp, B.J., Wiberg, D.W. (eds.) Modelling and Control of Breathing, pp. 189–196. Elsevier, New York (1983)

    Google Scholar 

  20. Poon, C.S.: Ventilatory control in hypercapnia and exercise: optimization hypothesis. J. Appl. Physiol. 62, 2447–2459 (1987)

    Google Scholar 

  21. Poon, C.S.: Effects of inspiratory resistive load on respiratory control in hypercapnia and exercise. J. Appl. Physiol. 66(5), 2391–2399 (1989)

    Google Scholar 

  22. Poon, C.S.: Self-tuning optimal regulation of respiratory motor output by hebbian covariance learning. Neural Netw. 8, 1–17 (1996)

    Google Scholar 

  23. Poon, C.S.: Respiratory models and control. In: Bronzion J.D. (ed.) Biomedical Engineering Handbook, vol. 2, 2nd edn., p. 161. CRC, Boca Raton, Florida (2000)

    Google Scholar 

  24. Poon, C.S., Greene, J.G.: Control of exercise hyperpnea during hypercapnia in humans. J. Appl. Physiol. 59(3), 792–797 (1985)

    Google Scholar 

  25. Poon, C.S., Lin, S.L., Knudson, O.B.: Optimization character of inspiratory neural drive. J. Appl. Physiol. 72(5), 2005–2017 (1992)

    Google Scholar 

  26. Poon, C.S., Tin, C., Yu, Y.: Homeostasis of exercise hyperpnea and optimal sensorimotor integration: the internal model paradigm. Respir. Physiol. Neurobiol. 159(1), 1–13; discussion 14–20 (2007)

    Google Scholar 

  27. Pugh E.N. Jr., Andersen, O.S.: Models and mechanistic insight. J. Gen. Physiol. 131(6), 515–519 (2008)

    Article  Google Scholar 

  28. Purves, M.: What do we breathe for? In: von Euler, C.., Lagercrantz, H. (eds.) Central Nervous Control Mechanisms in Breathing (Wenner-Gren Center Int. Symp. Ser.), vol. 32, pp. 7–12. Pergamon, Oxford, UK (1979)

    Google Scholar 

  29. Qutub, A., Gabhann, F., Karagiannis, E., Vempati, P., Popel, A.: Multiscale models of angiogenesis. IEEE Eng. Med. Biol. Mag. 28(2), 14–31 (2009)

    Article  Google Scholar 

  30. Saijo, N.: Translational study in cancer research. Intern. Med. 41(10), 770–773 (2002)

    Article  Google Scholar 

  31. Secher, N., Poon, C.S., Ward, S., Whipp, B., Duffin, J.: Supraspinal locomotor centers do/do not contribute significantly to the hyperpnea of dynamic exercise in humans. J. Appl. Physiol. 100(4), 1417–1418 (2006)

    Article  Google Scholar 

  32. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ (1991)

    MATH  Google Scholar 

  33. Sorger, P.K.: A reductionist’s systems biology: opinion. Curr. Opin. Cell Biol. 17(1), 9–11 (2005)

    Article  Google Scholar 

  34. Stevens, S.: To honor fechner and repeal his law. Science 133, 80–86 (1961)

    Article  Google Scholar 

  35. Strange, K.: The end of “naive reductionism”: Rise of systems biology or renaissance of physiology? Am. J. Physiol. Cell Physiol. 288(5), C968–C974 (2005)

    Article  Google Scholar 

  36. Taufer, M., Armen, R., Chen, J., Teller, P., Brooks, C.: Computational multiscale modeling in protein–ligand docking. IEEE Eng. Med. Biol. Mag. 28(2), 58–69 (2009)

    Article  Google Scholar 

  37. Tin, C., Poon, C.S.: Internal models in sensorimotor integration: perspectives from adaptive control theory. J. Neural Eng. 2(3), S147–S163 (2005)

    Article  Google Scholar 

  38. Waldrop, T.G., Iwamoto, G.A., Haouzi, P.: Point:counterpoint: supraspinal locomotor centers do/do not contribute significantly to the hyperpnea of dynamic exercise. J. Appl. Physiol. 100(3), 1077–1083 (2006)

    Article  Google Scholar 

  39. Ward, S.A.: Control of the exercise hyperpnoea in humans: a modeling perspective. Respir. Physiol. 122(2-3), 149–166 (2000)

    Article  Google Scholar 

  40. Wasserman, K., Whipp, B.J., Casaburi, R.: Respiratory control during exercise. In: Cherniack, N.S., Widdicombe, J.G. (eds.) Handbook of Physiology, vol. 2, pp. 595–620. American Physiological Society, Bethesda, MD (1986)

    Google Scholar 

  41. Wellstead, P., Bullinger, E., Kalarnatianos, D., Mason, O., Verwoerd, M.: The role of control and system theory in systems biology. Annu. Rev. Contr. 32(1), 33–47 (2008)

    Article  Google Scholar 

  42. White, R., Peng, G., Demir, S.: Multiscale modeling of biomedical, biological, and behavioral systems (part 1). IEEE Eng. Med. Biol. Mag. 28(2), 12–13 (2009)

    Article  Google Scholar 

  43. Wiener, N.: Cybernetics; or, Control and communication in the animal and the machine. Technology Press [Cambridge, MA] (1948)

    Google Scholar 

  44. Young, D.L.: Hebbian covariance learning and self-tuning optimal control. Ph.D. thesis, M.I.T (1997)

    Google Scholar 

  45. Young, D.L., Poon, C.S.: Hebbian covariance learning. a nexus for respiratory variability, memory, and optimization? Adv. Exp. Med. Biol. 450, 73–83 (1998)

    Google Scholar 

  46. Young, D.L., Poon, C.S.: A hebbian feedback covariance learning paradigm for self-tuning optimal control. IEEE Trans. Syst. Man Cybern. B Cybern. 31(2), 173–186 (2001)

    Article  Google Scholar 

  47. Young, D.L., Poon, C.S.: Soul searching and heart throbbing for biological modeling. Behav. Brain Sci. 24(06), 1080–1081 (2002)

    Google Scholar 

  48. Yu, Y., Poon, C.S.: Critique of “control of arterial Pco2 by somatic afferents”. J. Physiol. 572(3), 897–898 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

Chung Tin is an American Heart Association predoctoral fellow. The research of Chi-Sang Poon was supported by US National Institutes of Health grants HL067966, HL072849, HL079503 and RR028241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Tin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tin, C., Poon, CS. (2013). Integrative and Reductionist Approaches to Modeling of Control of Breathing. In: Batzel, J., Bachar, M., Kappel, F. (eds) Mathematical Modeling and Validation in Physiology. Lecture Notes in Mathematics(), vol 2064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32882-4_5

Download citation

Publish with us

Policies and ethics