Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1120 Accesses

Abstract

Classical random walks are a stochastic model of a particle or walker, moving according to classical physics about a discrete space represented by a combinatoric graph—a set of vertices interconnected by edges. The application of random walks from modelling Brownian motion to constructing randomised algorithms in classical computer science [2] has inspired development of a quantum mechanical analogue in quantum computer science.

Some of the results reported in this chapter and an abbreviated discussion thereof were published as Ref. [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that more recently, a related experiment was performed with \(n=2\) photons in a three-dimensional directly written waveguide array of \(N=6\) evanescently coupled waveguides in a ring structure [18].

  2. 2.

    The \(\frac{1}{2}\) factor for the diagonal elements arises from the normalisation of the Fock state \({a^\dagger _j}^2\left| 0 \right\rangle = \sqrt{2!}\left| 2 \right\rangle \).

  3. 3.

    We note that the simulation of higher dimensional discrete time quantum walks using two photons is treated in [28].

  4. 4.

    In for these two references, the quantum walk is modelled as a spin chain for transferring quantum information [34].

References

  1. A. Peruzzo, M. Lobino, J.C.F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M.G. Thompson, J.L. O’Brien, Quantum walks of correlated photons. Science 329, 1500–1503 (2010)

    Article  ADS  Google Scholar 

  2. R. Motwani, P. Raghavan, Randomized Algorithms (Cambridge University Press, New York, 1995)

    Google Scholar 

  3. A. Ambainis, Quantum walk algorithm for element distinctness. SIAM J. Comput. 37, 210–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. A.M. Childs, J. Goldstone, Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  5. A.M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, D.A. Spielman, Exponential algorithmic speedup by a quantum walk, in STOC ’03: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, 2003, pp. 59–68

    Google Scholar 

  6. A.M. Childs, Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2008)

    Article  MathSciNet  Google Scholar 

  7. M. Karski, L. Forster, J.-M. Choi, A. Steffen, W. Alt, D. Meschede, A. Widera, Quantum walk in position space with single optically trapped atoms. Science 325(5937), 174–177 (2009)

    Article  ADS  Google Scholar 

  8. H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, T. Schaetz, Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103, 090504 (2009)

    Article  ADS  Google Scholar 

  9. F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, C.F. Roos, Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010)

    Article  Google Scholar 

  10. C.A. Ryan, M. Laforest, J.C. Boilequ, R. Laflamme, Experimental implemtation of a discrete-time quanutm random walk on an nmr quantum-information processor. Phys. Rev. A 72, 062317 (2005)

    Article  ADS  Google Scholar 

  11. D. Bouwmeester, I. Marzoli, G.P. Karman, W. Schleich, J.P. Woerdman, Optical galton board. Phys. Rev. A 61, 013410 (1999)

    Article  ADS  Google Scholar 

  12. B. Do, M. Stohler, S. Balasubramanian, D. Elliott, Experimental realization of a quantum quincunx by use of linear optical elements. JOSA B 22(2), 499–504 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  13. M.A. Broome, A. Fedrizzi, B.P. Lanyon, I. Kassal, A. Aspuru-Guzik, A.G. White, Discrete single-photon quanutm walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010)

    Article  ADS  Google Scholar 

  14. A. Schreiber, K.N. Cassemiro, V. Potoček, A. Gábris, P.J. Mosley, E. Andersson, I. Jex, C. Silberhorn, Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104(5), 050502 (2010)

    Article  ADS  Google Scholar 

  15. H.B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, Y. Silberberg, Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100(17), 170506 (2008)

    Article  ADS  Google Scholar 

  16. P.L. Knight, E. Roldán, J.E. Sipe, Quantum walk on the line as an interference phenomenon. Phys. Rev. A 68 020301(R) (2003)

    Google Scholar 

  17. Y. Bromberg, Y. Lahini, R. Morandotti, Y. Silberberg, Quantum and classical correlations in waveguide lattices. Phys. Rev. Lett. 102(25), 253904 (2009)

    Article  ADS  Google Scholar 

  18. J.O. Owens, M.A. Broome, D.N. Biggerstaff, M.E. Coggin, A. Fedrizzi, T. Linjordet, M. Ams, G.D. Marshall, J. Twamley, M.J. Withford, A.G. White, Two-photon quantum walks in an elliptical direct-write waveguide array. New J. Phys. 13, 075003 (2011)

    Article  ADS  Google Scholar 

  19. A.M. Childs, On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys. 294, 581–603 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. J. Kempe, Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Google Scholar 

  21. A.M. Childs, E. Farhi, S. Gutmann, An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1, 35–43 (2002)

    Article  MathSciNet  Google Scholar 

  22. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg, Anderson localization and nonlinearity in one-dimensional disordered photonics lattices. Phys. Rev. Lett. 100, 013906 (2008)

    Google Scholar 

  23. L.E. Estes, T.H. Keil, L.M. Narducci, Quantum-mechanical description of two coupled harmonic oscillators. Phys. Rev. 175(1), 286 (1968)

    Article  ADS  Google Scholar 

  24. Y. Omar, N. Paunković, L. Sheridan, S. Bose, Quantum walk on a line with two entangled particles. Phys. Rev. A 74, 042304 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  25. Y. Lahini, Y. Bromberg, D.N. Christodoulides, Y. Silberberg, Quantum correlations in two-particle anderson localization. Phys. Rev. Lett. 105, 163905 (2010)

    Article  ADS  Google Scholar 

  26. Y. Bromberg, Y. Lahini, Y. Silberberg, Bloch oscillations of path-entangled photons. Phys. Rev. Lett. 105, 263604 (2010)

    Google Scholar 

  27. K. Mattle, M. Michler, H. Weinfurter, A. Zeilinger, M. Zukowski, Non-classical statistics at multiport beam splitter. Appl. Phys. B: Lasers Opt. 60(2–3, Suppl. S), S111 (1995)

    Google Scholar 

  28. P. Rohde, A. Schreiber, M. Stefanak, I. Jex, C. Silberhorn, Multi-walker discrete time quantum walks on arbitrary graphs, their properties, and their photonic implementation. New J. Phys. 13, 013001 (2011)

    Article  ADS  Google Scholar 

  29. C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987)

    Article  ADS  Google Scholar 

  30. E. Keil, A. Szameit, F. Dreisow, M. Heinrich, S. Nolte, A. Tünnermann, Photon correlations in two-dimensional waveguide arrays and their classical estimate. Phys. Rev. A 81, 023834 (2010)

    Google Scholar 

  31. J.P. Keating, N. Linden, J.C.F. Matthews, A. Winter, Localization and its consequences for quantum walk algorithms and quantum communication. Phys. Rev. A 76, 012315 (2007)

    Google Scholar 

  32. M. Christandl, N. Datta, A. Ekert, A.J. Landahl, Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  33. M.-H. Yung, Quantum speed limit for perfect state transfer in one dimension. Phys. Rev. A 74, 030303(R) (2006)

    Google Scholar 

  34. S. Bose, Quanutm communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  35. J.M. Harrison, J.P. Keating, J.M. Robbins, Quantum statistics on graphs. Proc. R. Soc. A 467, 212–233 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. F. Matthews .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matthews, J.C.F. (2013). Two Photon Quantum Walks. In: Multi-Photon Quantum Information Science and Technology in Integrated Optics. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32870-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32870-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32869-5

  • Online ISBN: 978-3-642-32870-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics