Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1099 Accesses

Abstract

Chapter 5 explored the manipulation of multi-photon entangled states observed via post selection—a technique that is a powerful approach to observing quantum mechanical effects in experimental quantum information science and a method we shall use again in Chap. 8. For many applications post-selection is not sufficient to generate useful entanglement that will provide a quantum mechanical advantage over other means.

Some of the results reported in this chapter and an abbreviated discussion thereof were published as Ref. [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C.F. Matthews, A. Politi, D. Bonneau, J.L. O’Brien, Heralding two-photon and four-photon path entanglement on a chip. Phys. Rev. Lett. 107, 163602 (2011)

    Google Scholar 

  2. H. Lee, P. Kok, N.J. Cerf, J.P. Dowling, Linear optics and projective measurements alone suffice to create large-photon-number path entanglement. Phys. Rev. A 65, 030101 (2002)

    Article  ADS  Google Scholar 

  3. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

    Article  ADS  Google Scholar 

  4. J.L. O’Brien, Optical quantum computing. Science 318(5856), 1567–1570 (2007)

    Article  ADS  Google Scholar 

  5. S. Gasparoni, J.W. Pan, P. Walther, T. Rudolph, A. Zeilinger, Realization of a photonic controlled-not gate sufficient for quantum computation. Phys. Rev. Lett. 93, 020504 (2004)

    Article  ADS  Google Scholar 

  6. R. Okamoto, J.L. O’Brien, H.F. Hofmann, T. Nagata, K. Sasaki, S. Takeuchi, An entanglement filter. Science 323(5913), 483–485 (2009)

    Article  ADS  Google Scholar 

  7. X.H. Bao, T.Y. Chen, Q. Zhang, J. Yang, H. Zhang, T. Yang, J.W. Pan, Optical nondestructive controlled-not gate without using entangled photons. Phys. Rev. Lett. 98, 170502 (2007)

    Article  ADS  Google Scholar 

  8. Q. Zhang, X.H. Bao, C.Y. Lu, X.Q. Zhou, T. Yang, T. Rudolph, J.W. Pan, Demonstration of a scheme for the generation of \(\text{``event-read"}\) entangled photon pairs from a single-photon source. Phys. Rev. A 77, 062316 (2008)

    Article  ADS  Google Scholar 

  9. R. Prevedel, G. Cronenberg, M.S. Tame, M. Paternostro, P. Walther, M.S. Kim, A. Zeilinger, Experimental realization of dicke states of up to six qubits for multiparty quantum networking. Phys. Rev. Lett. 103(2), 020503 (2009)

    Article  ADS  Google Scholar 

  10. W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Toth, H. Weinfurter, Experimental entanglement of a six-photon symmetric Dicke state. Phys. Rev. Lett. 103, 020504 (2009)

    Article  ADS  Google Scholar 

  11. C. Wagenknecht, C.M. Li, A. Reingruber, X.H. Bao, A. Goebel, Y.A. Chen, Q. Zhang, K. Chen, J.W. Pan, Experimental demonstration of a heralded entanglement source. Nat. Photonics 4, 549–552 (2010)

    Article  ADS  Google Scholar 

  12. S. Barz, G. Cronenberg, A. Zeilinger, P. Walther, Heralded generation of entangled photon pairs. Nat. Photonics 4, 553–556 (2010)

    Article  ADS  Google Scholar 

  13. J. Fiurasek, Conditional generation of n-photon entangled states of light. Phys. Rev. A 65, 053818 (2002)

    Article  ADS  Google Scholar 

  14. G.J. Pryde, A.G. White, Creation of maximally entangled photon-number states using optical fibre multiports. Phys. Rev. A 68, 052115 (2003)

    Article  ADS  Google Scholar 

  15. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320(5876), 646–649 (2008)

    Article  ADS  Google Scholar 

  16. C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987)

    Article  ADS  Google Scholar 

  17. T. Nagata, R. Okamoto, J.L. O’brien, K. Sasaki, S. Takeuchi, Beating the standard quantum limit with four-entangled photons. Science 316(5825), 726–729 (2007)

    Article  ADS  Google Scholar 

  18. P. Kok, H. Lee, J.P. Dowling, Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66, 063814 (2002)

    Article  ADS  Google Scholar 

  19. H. Cable, J.P. Dowling, Efficient generation of large number-path entanglement using only linear optics and feed-forward. Phys. Rev. Lett. 99, 163604 (2007)

    Article  ADS  Google Scholar 

  20. J.C.F. Matthews, A. Politi, A. Stefanov, J.L. O’Brien, Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346–350 (2009)

    Article  ADS  Google Scholar 

  21. R. Demkowicz-Dobrzanski, U. Dorner, B.J. Smith, J.S. Lundeen, W. Wasilewski, K. Banaszek, I.A. Walmsley, Quantum phase estimation with lossy interferometers. Phys. Rev. A 80(1), 013825 (2009)

    Article  ADS  Google Scholar 

  22. J.L. O’Brien, A. Furusawa, J. Vuckovic, Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009)

    Article  ADS  Google Scholar 

  23. H. Cable, F. Laloe, W.J. Mullin, Noon-state formation from fock-state Bose-Einstein condensates. Phys. Rev. A 83, 053626 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. F. Matthews .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matthews, J.C.F. (2013). Heralded NOON State Generation in Waveguide. In: Multi-Photon Quantum Information Science and Technology in Integrated Optics. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32870-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32870-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32869-5

  • Online ISBN: 978-3-642-32870-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics