Advertisement

Metal Reducers and Reduction Targets. A Short Survey About the Distribution of Dissimilatory Metal Reducers and the Multitude of Terminal Electron Acceptors

  • Gunnar Sturm
  • Kerstin Dolch
  • Katrin Richter
  • Micha Rautenberg
  • Johannes Gescher
Chapter

Abstract

The longer we study the processes of microbial metal reduction the more we see the diversity within the processes. There are model organisms that are widely used to study the biochemistry of microbial metal respiration, but these strains are only the tip of the iceberg in terms of phylogenetic diversity. Dissimilatory metal reducers are highly abundant and widespread within the tree of life. Interestingly, the phylogenetic diversity seems to be mirrored by a biochemical diversity, which we are just beginning to assess. Diversity can also be seen in the terminal electron acceptors that can be used. Certainly, iron and manganese are the most influential environmental metallic electron acceptors and were therefore covered in the first chapter of this book. Nevertheless, other metals can serve as respiratory electron acceptors as well. These metals are mostly toxic and their reduction might not only be of respiratory purpose but also a detoxification process. Interestingly, in the past years, reduction of these alternative metallic electron acceptors became more and more an applied process for bioremediation, metal enrichment, and catalyst production. Therefore, this chapter deals with diversity and highlights phylogenetic diversity as well as the diversity within the usable metallic electron acceptors.

Keywords

Electron Acceptor Ferric Iron Microbial Fuel Cell Terminal Electron Acceptor Acidithiobacillus Ferrooxidans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aklujkar M, Krushkal J, DiBartolo G, Lapidus A, Land ML, Lovley DR (2009) The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. BMC Microbiol 9:109PubMedCrossRefGoogle Scholar
  2. Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521Google Scholar
  3. Belchik SM, Kennedy DW, Dohnalkova AC, Wang Y, Sevinc PC, Wu H, Lin Y, Lu HP, Fredrickson JK, Shi L (2011) Extracellular reduction of hexavalent chromium by cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl Environ Microbiol 77:4035–4041PubMedCrossRefGoogle Scholar
  4. Bencheikh-Latmani R, Williams SM, Haucke L, Criddle CS, Wu LY, Zhou JZ, Tebo BM (2005) Global transcriptional profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) reduction. Appl Environ Microbiol 71:7453–7460PubMedCrossRefGoogle Scholar
  5. Biebl H, Pfennig N (1977) Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch Microbiol 112:115–117PubMedCrossRefGoogle Scholar
  6. Bond DR, Lovley DR (2002) Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ Microbiol 4:115–124PubMedCrossRefGoogle Scholar
  7. Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71:2186–2189PubMedCrossRefGoogle Scholar
  8. Boone DR, Liu Y, Zhao ZJ, Balkwill DL, Drake GR, Stevens TO, Aldrich HC (1995a) Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448Google Scholar
  9. Boone DR, Liu Y, Zhao ZJ, Balkwill DL, Drake GR, Stevens TO, Aldrich HC (1995b) Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448PubMedCrossRefGoogle Scholar
  10. Boyanov MI, Fletcher KE, Kwon MJ, Rui X, O’Loughlin EJ, Löffler FE, Kemner KM (2011) Solution and microbial controls on the formation of reduced U(IV) species. Environ Sci Technol 45:8336–8344PubMedCrossRefGoogle Scholar
  11. Bridge TAM, Johnson DB (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol 64:2181–2186PubMedGoogle Scholar
  12. Brock TD, Gustafson J (1976) Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571PubMedGoogle Scholar
  13. Byrne-Bailey KG, Wrighton KC, Melnyk RA, Agbo P, Hazen TC, Coates JD (2010) Complete genome sequence of the electricity-producing “Thermincola potens” strain JR. J Bacteriol 192:4078–4079PubMedCrossRefGoogle Scholar
  14. Caccavo F Jr, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759PubMedGoogle Scholar
  15. Caccavo F Jr, Coates JD, Rossello-Mora RA, Ludwig W, Schleifer KH, Lovley DR, McInerney MJ (1996) Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch Microbiol 165:370–376PubMedCrossRefGoogle Scholar
  16. Cardenas E, Wu WM, Leigh MB, Carley J, Carroll S, Gentry T, Luo J, Watson D, Gu B, Ginder-Vogel M, Kitanidis PK, Jardine PM, Zhou J, Criddle CS, Marsh TL, Tiedje JM (2008) Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. Appl Environ Microbiol 74:3718–3729PubMedCrossRefGoogle Scholar
  17. Carlson HK, Iavarone AT, Gorur A, Yeo BS, Tran R, Melnyk RA, Mathies RA, Auer M, Coates JD (2012) Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc Natl Acad Sci U S A 109:1702–1707PubMedCrossRefGoogle Scholar
  18. Carpentier W, De Smet L, Van Beeumen J, Brigé A (2005) Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor. J Bacteriol 187:3293–3301PubMedCrossRefGoogle Scholar
  19. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232PubMedCrossRefGoogle Scholar
  20. Childers SE, Lovley DR (2001) Differences in Fe(III) reduction in the hyperthermophilic archaeon, Pyrobaculum islandicum, versus mesophilic Fe(III)-reducing bacteria. FEMS Microbiol Lett 195:253–258PubMedCrossRefGoogle Scholar
  21. Coates JD, Lonergan DJ, Philips EJ, Jenter H, Lovley DR (1995) Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch Microbiol 164:406–413PubMedCrossRefGoogle Scholar
  22. Coates JD, Ellis DJ, Gaw CV, Lovley DR (1999) Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49 Pt 4:1615–1622Google Scholar
  23. Colemann ML, Hedrick DB, Lovely DR; White DC, Pye K (1993) Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Lett Nat 361:436–438Google Scholar
  24. Coupland K, Johnson DB (2008) Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol Lett 279:30–35PubMedCrossRefGoogle Scholar
  25. Crespo JM, Muñoz JA, González F, Blázquez ML, Ballester A (2007) Comparative bioreduction of Fe(III) with Geobacter metallireducens and Bacillus infernus. Adv Mater Res 20–21:599–602Google Scholar
  26. Cummings DEC, Caccavo F Jr, Spring S, Rosenzweig R (1999) Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 171:183–188CrossRefGoogle Scholar
  27. De Luca G, de Philip P, Dermoun Z, Rousset M, Verméglio A (2001) Reduction of technetium(VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase. Appl Environ Microbiol 67:4583–4587PubMedCrossRefGoogle Scholar
  28. de Vrind JP, Boogerd FC, de Vrind-de Jong EW (1986) Manganese reduction by a marine Bacillus species. J Bacteriol 167:30–34PubMedGoogle Scholar
  29. Dobbin PS, Warren LH, Cook NJ, McEwan AG, Powell AK, Richardson DJ (1996) Dissimilatory iron(lll) reduction by Rhodobacter capsulatus. Microbiol 142:765–774Google Scholar
  30. Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004) Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088PubMedCrossRefGoogle Scholar
  31. Dopson M, Baker-Austin C, Bond P (2007) Towards determining details of anaerobic growth coupled to ferric iron reduction by the acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Extrem Life Under Extrem Cond 11:159–168CrossRefGoogle Scholar
  32. Feinberg LF, Holden JF (2006) Characterization of dissimilatory Fe(III) versus NO3- reduction in the hyperthermophilic archaeon Pyrobaculum aerophilum. J Bacteriol 188:525–531PubMedCrossRefGoogle Scholar
  33. Feinberg LF, Srikanth R, Vachet RW, Holden JF (2008) Constraints on anaerobic respiration in the hyperthermophilic archaea Pyrobaculum islandicum and Pyrobaculum aerophilum. Appl Environ Microbiol 74:396–402PubMedCrossRefGoogle Scholar
  34. Francis CA, Obraztsova AY, Tebo BM (2000) Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl Environ Microbiol 66:543–548PubMedCrossRefGoogle Scholar
  35. Giudici-Orticoni M-T, Leroy G, Nitschke W, Bruschi M (2000) Characterization of a new dihemic c 4-type cytochrome isolated from Thiobacillus ferrooxidans. Biochemistry 39:7205–7211PubMedCrossRefGoogle Scholar
  36. Gorby YA, Caccavo F, Bolton H (1998) Microbial reduction of CobaltIIIEDTA- in the presence and absence of manganese(IV) oxide. Environ Sci Technol 32:244–250CrossRefGoogle Scholar
  37. Gorlenko V, Tsapin A, Namsaraev Z, Teal T, Tourova T, Engler D, Mielke R, Nealson K (2004) Anaerobranca californiensis sp. nov., an anaerobic, alkalithermophilic, fermentative bacterium isolated from a hot spring on Mono Lake. Int J Syst Evol Microbiol 54:739–743PubMedCrossRefGoogle Scholar
  38. Guha H, Jayachandran K, Maurrasse F (2001) Kinetics of chromium (VI) reduction by a type strain Shewanella alga under different growth conditions. Environ Pollut 115:209–218PubMedCrossRefGoogle Scholar
  39. Harrison AP (1981) Acidiphilium cryptum gen. nov., sp. nov., heterotrophic bacterium from acidic mineral environments. Int J Syst Bacteriol 31:327–332CrossRefGoogle Scholar
  40. Hau HH, Gilbert A, Coursolle D, Gralnick JA (2008) Mechanism and consequences of anaerobic respiration of cobalt by Shewanella oneidensis strain MR-1. Appl Environ Microbiol 74:6880–6886PubMedCrossRefGoogle Scholar
  41. Haveman SA, Holmes DE, Ding YH, Ward JE, Didonato RJ Jr, Lovley DR (2006) c-Type cytochromes in Pelobacter carbinolicus. Appl Environ Microbiol 72:6980–6985PubMedCrossRefGoogle Scholar
  42. He Q, Sanford RA (2003) Characterization of Fe(III) reduction by chlororespiring Anaeromyxobacter dehalogenans. Appl Environ Microbiol 69:2712–2718PubMedCrossRefGoogle Scholar
  43. Holmes DE, Bond DR, Lovley DR (2004) Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol 70:1234–1237PubMedCrossRefGoogle Scholar
  44. Huber R, Kristjansson JK, Stetter KO (1987) Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100 °C. Arch Microbiol 149:95–101CrossRefGoogle Scholar
  45. Icopini GA, Boukhalfa H, Neu MP (2007) Biological reduction of Np(V) and Np(V) citrate by metal-reducing bacteria. Environ Sci Technol 41:2764–2769PubMedCrossRefGoogle Scholar
  46. Icopini GA, Lack JG, Hersman LE, Neu MP, Boukhalfa H (2009) Plutonium(V/VI) reduction by the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1. Appl Environ Microbiol 75:3641–3647PubMedCrossRefGoogle Scholar
  47. Johnson DB, Bridge TAM (2002) Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp. J Appl Microbiol 92:315–321PubMedCrossRefGoogle Scholar
  48. Johnson DB, Hallberg KB (2009) Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv Microb Physiol 54:201–255CrossRefGoogle Scholar
  49. Johnson DB, McGinness S (1991) Ferric iron reduction by acidophilic heterotrophic bacteria. Appl Environ Microbiol 57:207–211PubMedGoogle Scholar
  50. Johnson DB, Stallwood B, Kimura S, Hallberg KB (2006) Isolation and characterization of Acidicaldus organivorus, gen. nov., sp. nov.: a novel sulfur-oxidizing, ferric iron-reducing thermo-acidophilic heterotrophic Proteobacterium. Arch Microbiol 185:212–221PubMedCrossRefGoogle Scholar
  51. Johnson DB, Joulian C, d’Hugues P, Hallberg KB (2008) Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations. Extrem Life Under Extrem Cond 12:789–798CrossRefGoogle Scholar
  52. Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB (2009) Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol 59:1082–1089PubMedCrossRefGoogle Scholar
  53. Junier P, Frutschi M, Wigginton NS, Schofield EJ, Bargar JR, Bernier-Latmani R (2009) Metal reduction by spores of Desulfotomaculum reducens. Environ Microbiol 11:3007–3017PubMedCrossRefGoogle Scholar
  54. Kanso S, Greene AC, Patel BK (2002) Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52:869–874PubMedCrossRefGoogle Scholar
  55. Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and Toxic Metals at 100 °C by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056PubMedCrossRefGoogle Scholar
  56. Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol 67:3275–3279PubMedCrossRefGoogle Scholar
  57. Kashefi K, Holmes DE, Reysenbach AL, Lovley DR (2002a) Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: Isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp nov. Appl Environ Microbiol 68:1735–1742PubMedCrossRefGoogle Scholar
  58. Kashefi K, Tor JM, Holmes DE, Van Praagh CVG, Reysenbach AL, Lovley DR (2002b) Geoglobus ahangari gen. nov., sp nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52:719–728PubMedCrossRefGoogle Scholar
  59. Kashefi K, Shelobolina ES, Elliott WC, Lovley DR (2008) Growth of thermophilic and hyperthermophilic Fe(III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor. Appl Environ Microbiol 74:251–258PubMedCrossRefGoogle Scholar
  60. Khare N, Lovelace DM, Eggleston CM, Swenson M, Magnuson TS (2006) Redox-linked conformation change and electron transfer between monoheme c-type cytochromes and oxides. Geochimica et Cosmochimica 70:4332–4342Google Scholar
  61. Kim BH, Ikeda T, Park HS, Kim HJ, Hyun MS, Kano K, Takagi K, Tatsumi H (1999) Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech 13:475–478CrossRefGoogle Scholar
  62. Küsel K, Dorsch T, Acker G, Stackebrandt E (1999) Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl Environ Microbiol 65:3633–3640PubMedGoogle Scholar
  63. Küsel K, Roth U, Drake HL (2002) Microbial reduction of Fe(III) in the presence of oxygen under low pH conditions. Environ Microbiol 4:414–421PubMedCrossRefGoogle Scholar
  64. Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80:637–649PubMedCrossRefGoogle Scholar
  65. Liu D, Dong H, Bishop ME, Wang H, Agrawal A, Tritschler S, Eberl DD, Xie S (2011) Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochimica et Cosmochimica Acta 75:1057–1071CrossRefGoogle Scholar
  66. Lloyd JR, Nolting HF, Solé VA, Bosecker K, Macaskie LE (1998) Technetium reduction and precipitation by sulfate-reducing bacteria. Geomicrobiol J 15:45–58CrossRefGoogle Scholar
  67. Lloyd JR, Sole VA, Van Praagh CVG, Lovley DR (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl Environ Microbiol 66:3743–3749PubMedCrossRefGoogle Scholar
  68. Lloyd JR, Chesnes J, Glasauer S., Bunker DJL, Livens FR, Lovley DR (2002) Reduction of actinides and fission products by Fe(III)-reducing bacteria. Geomicrobiol J 19:103–120Google Scholar
  69. Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S (1993a) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344PubMedCrossRefGoogle Scholar
  70. Lovley DR, Kashefi K, Vargas M, Tor JM, Blunt-Harris EL (2000) Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chem Geol 169:289–298CrossRefGoogle Scholar
  71. Lovley DR, Phillips EJ (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856PubMedGoogle Scholar
  72. Lovley DR, Phillips EJ, Lonergan DJ, Widman PK (1995) Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61:2132–2138PubMedGoogle Scholar
  73. Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416CrossRefGoogle Scholar
  74. Lovley DR, Widman PK, Woodward JC, Phillips EJ (1993b) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59:3572–3576PubMedGoogle Scholar
  75. Lyalkova NN, Yurkova NA (1992) Role of microorganisms in vanadium concentration and dispersion. Geomicrobiol J 10:15–26CrossRefGoogle Scholar
  76. Magnuson TS, Swenson MW, Paszczynski AJ, Deobald LA, Kerk D, Cummings DE (2010) Proteogenomic and functional analysis of chromate reduction in Acidiphilium cryptum JF-5, an Fe(III)-respiring acidophile. Biometals 23:1129–1138PubMedCrossRefGoogle Scholar
  77. Middleton SS, Latmani RB, Mackey MR, Ellisman MH, Tebo BM, Criddle CS (2003) Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnol Bioeng 83:627–637PubMedCrossRefGoogle Scholar
  78. Myers JM, Antholine WE, Myers CR (2004) Vanadium(V) reduction by Shewanella oneidensis MR-1 requires menaquinone and cytochromes from the cytoplasmic and outer membranes. Appl Environ Microbiol 70:1405–1412PubMedCrossRefGoogle Scholar
  79. Nevin KP, Lovley DR (2002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol 68:2294–2299PubMedCrossRefGoogle Scholar
  80. Nolan M, Sikorski J, Davenport K, Lucas S, Del Rio TG, Tice H, Cheng JF, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Tapia R, Brettin T, Detter JC, Han C, Yasawong M, Rohde M, Tindall BJ, Goker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2010) Complete genome sequence of Ferrimonas balearica type strain (PAT). Stand Genomic Sci 3:174–182PubMedCrossRefGoogle Scholar
  81. Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR (2004) Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Appl Environ Microbiol 70:3091–3095PubMedCrossRefGoogle Scholar
  82. Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12PubMedCrossRefGoogle Scholar
  83. Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129–134PubMedCrossRefGoogle Scholar
  84. Pollock J, Weber KA, Lack J, Achenbach LA, Mormile MR, Coates JD (2007) Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, Bacillus sp. isolated from salt flat sediments of Soap Lake. Appl Microbiol Biotechnol 77:927–934PubMedCrossRefGoogle Scholar
  85. Pronk JT, de Bruyn JC, Bos P, Kuenen JG (1992) Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol 58:2227–2230PubMedGoogle Scholar
  86. Reysenbach AL, Liu YT, Banta AB, Beveridge TJ, Kirshtein JD, Schouten S, Tivey MK, Von Damm KL, Voytek MA (2006) A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442:444–447PubMedCrossRefGoogle Scholar
  87. Richter H, Lanthier M, Nevin KP, Lovley DR (2007) Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes. Appl Environ Microbiol 73:5347–5353PubMedCrossRefGoogle Scholar
  88. Roden EE, Lovley DR (1993) Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59:734–742PubMedGoogle Scholar
  89. Romine MF, Carlson TS, Norbeck AD, Mccue LA, Lipton MS (2008) Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome. Appl Environ Microbiol 74:3257–3265PubMedCrossRefGoogle Scholar
  90. Rotaru A-E, Jiang W, Finster K, Skrydstrup T, Meyer RL (2012) Non-enzymatic palladium recovery on microbial and synthetic surfaces. Biotechnol Bioeng 109:1889–1897Google Scholar
  91. Sanford RA, Wu Q, Sung Y, Thomas SH, Amos BK, Prince EK, Loffler FE (2007) Hexavalent uranium supports growth of Anaeromyxobacter dehalogenans and Geobacter spp. with lower than predicted biomass yields. Environ Microbiol 9:2885–2893PubMedCrossRefGoogle Scholar
  92. Slobodkin AI, Jeanthon C, L’Haridon S, Nazina T, Miroshnichenko M, Bonch-Osmolovskaya E (1999) Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of western siberia. Curr Microbiol 39:99–102PubMedCrossRefGoogle Scholar
  93. Slobodkina GB, Kolganova TV, Querellou J, Bonch-Osmolovskaya EA, Slobodkin AI (2009) Geoglobus acetivorans sp nov., an iron(III)-reducing archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 59:2880–2883PubMedCrossRefGoogle Scholar
  94. Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55(1–79):317Google Scholar
  95. Straub KL, Benz M, Schink B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34:181–186PubMedCrossRefGoogle Scholar
  96. Sugio T, Hirayama K, Inagaki K, Tanaka H, Tano T (1992) Molybdenum oxidation by Thiobacillus ferrooxidans. Appl Environ Microbiol 58:1768–1771PubMedGoogle Scholar
  97. Summers ZM, Ueki T, Ismail W, Haveman SA, Lovley DR (2012) Laboratory evolution of Geobacter sulfurreducens for enhanced growth on lactate via a single-base-pair substitution in a transcriptional regulator. ISME J 6:975–983PubMedCrossRefGoogle Scholar
  98. Switzer Blum J, Burns Bindi A, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30PubMedCrossRefGoogle Scholar
  99. Tebo BM, Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193–198Google Scholar
  100. Thomas SH, Wagner RD, Arakaki AK, Skolnick J, Kirby JR, Shimkets LJ, Sanford RA, Loffler FE (2008) The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PLoS One 3:e2103PubMedCrossRefGoogle Scholar
  101. Vadas A, Monbouquette HG, Johnson E, Schröder I (1999) Identification and characterization of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Biol Chem 274:36715–36721PubMedCrossRefGoogle Scholar
  102. van Marwijk J, Opperman D, Piater L, van Heerden E (2009) Reduction of vanadium(V) by Enterobacter cloacae EV-SA01 isolated from a South African deep gold mine. Biotechnol Lett 31:845–849PubMedCrossRefGoogle Scholar
  103. Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67PubMedCrossRefGoogle Scholar
  104. Wade R Jr, DiChristina TJ (2000) Isolation of U(VI) reduction-deficient mutants of Shewanella putrefaciens. FEMS Microbiol Lett 184:143–148PubMedCrossRefGoogle Scholar
  105. Wiatrowski HA, Ward PM, Barkay T (2006) Novel reduction of mercury(II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ Sci Technol 40:6690–6696PubMedCrossRefGoogle Scholar
  106. Wildung RE, Gorby YA, Krupka KM, Hess NJ, Li SW, Plymale AE, McKinley JP, Fredrickson JK (2000) Effect of electron donor and solution chemistry on products of dissimilatory Reduction of technetium by Shewanella putrefaciens. Appl Environ Microbiol 66:2451–2460PubMedCrossRefGoogle Scholar
  107. Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, Hugenholtz P, Andersen GL, Coates JD (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2:1146–1156PubMedCrossRefGoogle Scholar
  108. Wrighton KC, Thrash JC, Melnyk RA, Bigi JP, Byrne-Bailey KG, Remis JP, Schichnes D, Auer M, Chang CJ, Coates JD (2011) Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol 77:7633–7639PubMedCrossRefGoogle Scholar
  109. Wu Q, Sanford RA, Loffler FE (2006) Uranium(VI) reduction by Anaeromyxobacter dehalogenans strain 2CP-C. Appl Environ Microbiol 72:3608–3614PubMedCrossRefGoogle Scholar
  110. Ye Q, Roh Y, Carroll SL, Blair B, Zhou J, Zhang CL, Fields MW (2004) Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol 70:5595–5602PubMedCrossRefGoogle Scholar
  111. Yoshida N, Nakasato M, Ohmura N, Ando A, Saiki H, Ishii M, Igarashi Y (2006) Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+. Curr Microbiol 53:406–411PubMedCrossRefGoogle Scholar
  112. Yurkova NA, Lyalikova NN (1990) New vanadate-reducing facultative chemolithotrophic bacteria. Mikrobiologiya 59:968–975 (English translation, pp 672–677)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gunnar Sturm
    • 1
  • Kerstin Dolch
    • 1
  • Katrin Richter
    • 1
  • Micha Rautenberg
    • 1
  • Johannes Gescher
    • 1
  1. 1.Institute for Applied BioscienceKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations