The Biochemistry of Dissimilatory Ferric Iron and Manganese Reduction in Shewanella oneidensis



More than two decades ago, Kenneth Nealson and Charles Myers published a seminal manuscript, describing an organism that can couple growth to the respiratory reduction of manganese oxide, an extracellular electron acceptor. This was the starting point of research aiming to elucidate mechanisms of extracellular respiration in a γ-proteobacterium named Shewanella oneidensis. This research is manifested in a nearly confusing multitude of publications that are sometimes even contradictory. It is the aim of this chapter to give a thorough overview of our knowledge about the biochemistry of metal respiration in S. oneidensis. This chapter starts off with a technological survey describing the molecular toolbox we have in our hands to genetically modify S. oneidensis. Thereafter, the path of electrons from the cytoplasmic membrane to the cell surface is followed, and thereby potential proteins for this electron transport and the transfer onto terminal metallic electron acceptors are brought to the reader’s attention. Moreover, the potential role of further proteins is analyzed that are not necessarily involved in the electron transport chain to ferric iron or manganese oxides per se but still seem to provide a selective advantage for the organism. Throughout the text it will become clear that the list of open questions concerning S. oneidensis physiology is still, even after decades of research and although it is the best studied dissimilatory metal reducer, extensive, and that there is room for more fascinating questions that can be addressed using the system S. oneidensis.


Ferric Iron Manganese Oxide Microbial Fuel Cell Terminal Electron Acceptor Ferric Citrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Atack JM, Kelly DJ (2007) Structure, mechanism and physiological roles of bacterial cytochrome c peroxidases. Adv Microb Physiol 52:73–106PubMedCrossRefGoogle Scholar
  2. Atkinson SJ, Mowat CG, Reid GA, Chapman SK (2007) An octaheme c-type cytochrome from Shewanella oneidensis can reduce nitrite and hydroxylamine. FEBS Lett 581:3805–3808PubMedCrossRefGoogle Scholar
  3. Beliaev AS, Saffarini DA (1998) Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol 180:6292–6297PubMedGoogle Scholar
  4. Beliaev AS, Thompson DK, Khare T, Lim H, Brandt CC, Li G, Murray AE, Heidelberg JF, Giometti CS, Yates J 3rd, Nealson KH, Tiedje JM, Zhoui J (2002) Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors. OMICS 6:39–60PubMedCrossRefGoogle Scholar
  5. Beliaev AS, Klingeman DM, Klappenbach JA, Wu L, Romine MF, Tiedje JM, Nealson KH, Fredrickson JK, Zhou J (2005) Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J Bacteriol 187:7138–7145PubMedCrossRefGoogle Scholar
  6. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462PubMedCrossRefGoogle Scholar
  7. Bos MP, Robert V, Tommassen J (2007) Biogenesis of the gram-negative bacterial outer membrane. Annu Rev Microbiol 61:191–214PubMedCrossRefGoogle Scholar
  8. Bouhenni R, Gehrke A, Saffarini D (2005) Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon. Appl Environ Microbiol 71:4935–4937PubMedCrossRefGoogle Scholar
  9. Bouhenni RA, Vora GJ, Biffinger JC, Shirodkar S, Brockman K, Ray R, Wu P, Johnson BJ, Biddle EM, Marshall MJ, Fitzgerald LA, Little BJ, Fredrickson JK, Beliaev AS, Ringeisen BR, Saffarini DA (2010) The role of Shewanella oneidensis MR-1 outer surface structures in extracellular electron transfer. Electroanal 22:856–864CrossRefGoogle Scholar
  10. Braun V, Hantke K (2011) Recent insights into iron import by bacteria. Curr Opin Chem Biol 15:328–334PubMedCrossRefGoogle Scholar
  11. Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF, Zhou J, Beliaev AS, Bouhenni R, Saffarini D, Mansfeld F, Kim BH, Fredrickson JK, Nealson KH (2007) Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol 73:7003–7012PubMedCrossRefGoogle Scholar
  12. Brown RN, Romine MF, Schepmoes AA, Smith RD, Lipton MS (2010) Mapping the subcellular proteome of Shewanella oneidensis MR-1 using sarkosyl-based fractionation and LC-MS/MS protein identification. J Proteome Res 9:4454–4463PubMedCrossRefGoogle Scholar
  13. Bücking C, Popp F, Kerzenmacher S, Gescher J (2010) Involvement and specificity of Shewanella oneidensis outer membrane cytochromes in the reduction of soluble and solid-phase terminal electron acceptors. FEMS Microbiol Lett 306:144–151PubMedCrossRefGoogle Scholar
  14. Bücking C, Piepenbrock A, Kappler A, Gescher J (2012) Outer membrane cytochrome independent reduction of extracellular electron acceptors in Shewanella oneidensis. Microbiology (Epub ahead of print)Google Scholar
  15. Burns JL, DiChristina TJ (2009) Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enterica serovar typhimurium LT2. Appl Environ Microbiol 75:5209–5217PubMedCrossRefGoogle Scholar
  16. Cabiscol E, Piulats E, Echave P, Herrero E, Ros J (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275:27393–27398PubMedGoogle Scholar
  17. Carpentier W, De Smet L, Van Beeumen J, Brige A (2005) Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor. J Bacteriol 187:3293–3301PubMedCrossRefGoogle Scholar
  18. Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF, Bradley J, Reardon CL, Shi L, Beliaev AS, Marshall MJ, Wang Z, Watmough NJ, Fredrickson JK, Zachara JM, Butt JN, Richardson DJ (2011) Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci U S A 108:9384–9389PubMedCrossRefGoogle Scholar
  19. Coursolle D, Gralnick JA (2010) Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol MicrobiolGoogle Scholar
  20. Cruz-Garcia C, Murray AE, Klappenbach JA, Stewart V, Tiedje JM (2007) Respiratory nitrate ammonification by Shewanella oneidensis MR-1. J Bacteriol 189:656–662PubMedCrossRefGoogle Scholar
  21. DiChristina TJ, Moore CM, Haller CA (2002) Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene. J Bacteriol 184:142–151PubMedCrossRefGoogle Scholar
  22. Dobbin PS, Butt JN, Powell AK, Reid GA, Richardson DJ (1999) Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. Biochem J 342(Pt 2):439–448PubMedCrossRefGoogle Scholar
  23. El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci U S A 107:18127–18131PubMedCrossRefGoogle Scholar
  24. Elias DA, Monroe ME, Marshall MJ, Romine MF, Belieav AS, Fredrickson JK, Anderson GA, Smith RD, Lipton MS (2005) Global detection and characterization of hypothetical proteins in Shewanella oneidensis MR-1 using LC-MS based proteomics. Proteomics 5:3120–3130PubMedCrossRefGoogle Scholar
  25. Elias DA, Monroe ME, Smith RD, Fredrickson JK, Lipton MS (2006) Confirmation of the expression of a large set of conserved hypothetical proteins in Shewanella oneidensis MR-1. J Microbiol Methods 66:223–233PubMedCrossRefGoogle Scholar
  26. Elias DA, Yang F, Mottaz HM, Beliaev AS, Lipton MS (2007) Enrichment of functional redox reactive proteins and identification by mass spectrometry results in several terminal Fe(III)-reducing candidate proteins in Shewanella oneidensis MR-1. J Microbiol Methods 68:367–375PubMedCrossRefGoogle Scholar
  27. Esteve-Nunez A, Sosnik J, Visconti P, Lovley DR (2008) Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens. Environ Microbiol 10:497–505PubMedCrossRefGoogle Scholar
  28. Firer-Sherwood M, Pulcu GS, Elliott SJ (2008) Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window. J Biol Inorg Chem 13:849–854PubMedCrossRefGoogle Scholar
  29. Fonseca BM, Saraiva IH, Paquete CM, Soares CM, Pacheco I, Salgueiro CA, Louro RO (2009) The tetraheme cytochrome from Shewanella oneidensis MR-1 shows thermodynamic bias for functional specificity of the hemes. J Biol Inorg Chem 14:375–385PubMedCrossRefGoogle Scholar
  30. Gao H, Yang ZK, Barua S, Reed SB, Romine MF, Nealson KH, Fredrickson JK, Tiedje JM, Zhou J (2009) Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA. ISME J 3:966–976PubMedCrossRefGoogle Scholar
  31. Gao H, Barua S, Liang Y, Wu L, Dong Y, Reed S, Chen J, Culley D, Kennedy D, Yang Y, He Z, Nealson KH, Fredrickson JK, Tiedje JM, Romine M, Zhou J (2010) Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration. Microbiol Biotechnol 3:455–466CrossRefGoogle Scholar
  32. Gescher JS, Cordova CD, Spormann AM (2008) Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases. Mol Microbiol 68:706–719PubMedCrossRefGoogle Scholar
  33. Gorby Y, McLean J, Korenevsky A, Rosso K, El-Naggar MY, Beveridge TJ (2008) Redox-reactive membrane vesicles produced by Shewanella. Geobiology 6:232–241PubMedCrossRefGoogle Scholar
  34. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363PubMedCrossRefGoogle Scholar
  35. Gralnick JA, Vali H, Lies DP, Newman DK (2006) Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc Natl Acad Sci U S A 103:4669–4674PubMedCrossRefGoogle Scholar
  36. Gunsalus RP (1992) Control of electron flow in Escherichia coli: coordinated transcription of respiratory pathway genes. J Bacteriol 174:7069–7074PubMedGoogle Scholar
  37. Hartshorne RS, Jepson BN, Clarke TA, Field SJ, Fredrickson J, Zachara J, Shi L, Butt JN, Richardson DJ (2007) Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. J Biol Inorg Chem 12:1083–1094PubMedCrossRefGoogle Scholar
  38. Hartshorne RS, Reardon CL, Ross D, Nuester J, Clarke TA, Gates AJ, Mills PC, Fredrickson JK, Zachara JM, Shi L, Beliaev AS, Marshall MJ, Tien M, Brantley S, Butt JN, Richardson DJ (2009) Characterization of an electron conduit between bacteria and the extracellular environment. Proc Natl Acad Sci U S A 106:22169–22174PubMedCrossRefGoogle Scholar
  39. Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192:3345–3351PubMedCrossRefGoogle Scholar
  40. Jiao Y, Newman DK (2007) The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J Bacteriol 189:1765–1773PubMedCrossRefGoogle Scholar
  41. Jones ME, Fennessey CM, DiChristina TJ, Taillefert M (2010) Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor. Environ Microbiol 12:938–950PubMedCrossRefGoogle Scholar
  42. Karpinets TV, Romine MF, Schmoyer DD, Kora GH, Syed MH, Leuze MR, Serres MH, Park BH, Samatova NF, Uberbacher EC (2010) Shewanella knowledgebase: integration of the experimental data and computational predictions suggests a biological role for transcription of intergenic regions. Database (Oxford) 2010. baq012Google Scholar
  43. Kerisit S, Rosso KM (2007) Kinetic Monte Carlo model of charge transport in hematite (alpha-Fe(2)O(3)). J Chem Phys 127:124706PubMedCrossRefGoogle Scholar
  44. Kolker E, Picone AF, Galperin MY, Romine MF, Higdon R, Makarova KS, Kolker N, Anderson GA, Qiu X, Auberry KJ, Babnigg G, Beliaev AS, Edlefsen P, Elias DA, Gorby YA, Holzman T, Klappenbach JA, Konstantinidis KT, Land ML, Lipton MS, McCue LA, Monroe M, Pasa-Tolic L, Pinchuk G, Purvine S, Serres MH, Tsapin S, Zakrajsek BA, Zhu W, Zhou J, Larimer FW, Lawrence CE, Riley M, Collart FR, Yates JR 3rd, Smith RD, Giometti CS, Nealson KH, Fredrickson JK, Tiedje JM (2005) Global profiling of Shewanella oneidensis MR-1: expression of hypothetical genes and improved functional annotations. Proc Natl Acad Sci U S A 102:2099–2104PubMedCrossRefGoogle Scholar
  45. Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184PubMedCrossRefGoogle Scholar
  46. Learman DR, Yi H, Brown SD, Martin SL, Geesey GG, Stevens AM, Hochella MF Jr (2009) Involvement of Shewanella oneidensis MR-1 LuxS in biofilm development and sulfur metabolism. Appl Environ Microbiol 75:1301–1307PubMedCrossRefGoogle Scholar
  47. Leys D, Tsapin AS, Nealson KH, Meyer TE, Cusanovich MA, Van Beeumen JJ (1999) Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1. Nat Struct Biol 6:1113–1117PubMedCrossRefGoogle Scholar
  48. Leys D, Meyer TE, Tsapin AS, Nealson KH, Cusanovich MA, Van Beeumen JJ (2002) Crystal structures at atomic resolution reveal the novel concept of “electron-harvesting” as a role for the small tetraheme cytochrome c. J Biol Chem 277:35703–35711PubMedCrossRefGoogle Scholar
  49. Lies DP, Hernandez ME, Kappler A, Mielke RE, Gralnick JA, Newman DK (2005) Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl Environ Microbiol 71:4414–4426PubMedCrossRefGoogle Scholar
  50. Liu J, Wang Z, Belchik SM, Edwards MJ, Liu C, Kennedy DW, Merkley ED, Lipton MS, Butt JN, Richardson DJ, Zachara JM, Fredrickson JK, Rosso KM, Shi L (2012) Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1. Front Microbiol 3:37PubMedGoogle Scholar
  51. Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI (2006) Positioning of proteins in membranes: a computational approach. Protein Sci 15:1318–1333PubMedCrossRefGoogle Scholar
  52. Lower BH, Lins RD, Oestreicher Z, Straatsma TP, Hochella MF Jr, Shi L, Lower SK (2008) In vitro evolution of a peptide with a hematite binding motif that may constitute a natural metal-oxide binding archetype. Environ Sci Technol 42:3821–3827PubMedCrossRefGoogle Scholar
  53. Marshall MJ, Beliaev AS, Dohnalkova AC, Kennedy DW, Shi L, Wang Z, Boyanov MI, Lai B, Kemner KM, McLean JS, Reed SB, Culley DE, Bailey VL, Simonson CJ, Saffarini DA, Romine MF, Zachara JM, Fredrickson JK (2006) c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol 4:e268PubMedCrossRefGoogle Scholar
  54. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105:3968–3973PubMedCrossRefGoogle Scholar
  55. McLean JS, Pinchuk GE, Geydebrekht OV, Bilskis CL, Zakrajsek BA, Hill EA, Saffarini DA, Romine MF, Gorby YA, Fredrickson JK, Beliaev AS (2008) Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1. Environ Microbiol 10:1861–1876PubMedCrossRefGoogle Scholar
  56. McMillan DG, Marritt SJ, Butt JN, Jeuken LJ (2012) Menaquinone-7 is specific cofactor in tetraheme quinol dehydrogenase CymA. J Biol Chem 287:14215–14225PubMedCrossRefGoogle Scholar
  57. Meyer TE, Tsapin AI, Vandenberghe I, de Smet L, Frishman D, Nealson KH, Cusanovich MA, van Beeumen JJ (2004) Identification of 42 possible cytochrome c genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. OMICS 8:57–77PubMedCrossRefGoogle Scholar
  58. Morris CJ, Black AC, Pealing SL, Manson FD, Chapman SK, Reid GA, Gibson DM, Ward FB (1994) Purification and properties of a novel cytochrome: flavocytochrome c from Shewanella putrefaciens. Biochem J 302(Pt 2):587–593PubMedGoogle Scholar
  59. Mowat CG, Rothery E, Miles CS, McIver L, Doherty MK, Drewette K, Taylor P, Walkinshaw MD, Chapman SK, Reid GA (2004) Octaheme tetrathionate reductase is a respiratory enzyme with novel heme ligation. Nat Struct Mol Biol 11:1023–1024PubMedCrossRefGoogle Scholar
  60. Murphy JN, Saltikov CW (2007) The cymA gene, encoding a tetraheme c-type cytochrome, is required for arsenate respiration in Shewanella species. J Bacteriol 189:2283–2290PubMedCrossRefGoogle Scholar
  61. Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron-acceptor. Science 240:1319–1321PubMedCrossRefGoogle Scholar
  62. Myers CR, Myers JM (1997a) Isolation and characterization of a transposon mutant of Shewanella putrefaciens MR-1 deficient in fumarate reductase. Lett Appl Microbiol 25:162–168PubMedCrossRefGoogle Scholar
  63. Myers CR, Myers JM (1997b) Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J Bacteriol 179:1143–1152PubMedGoogle Scholar
  64. Myers CR, Myers JM (1997c) Replication of plasmids with the p15A origin in Shewanella putrefaciens MR-1. Lett Appl Microbiol 24:221–225PubMedCrossRefGoogle Scholar
  65. Myers CR, Myers JM (2002a) MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. Appl Environ Microbiol 68:5585–5594PubMedCrossRefGoogle Scholar
  66. Myers CR, Myers JM (2003a) Cell surface exposure of the outer membrane cytochromes of Shewanella oneidensis MR-1. Lett Appl Microbiol 37:254–258PubMedCrossRefGoogle Scholar
  67. Myers CR, Myers JM (2004a) The outer membrane cytochromes of Shewanella oneidensis MR-1 are lipoproteins. Lett Appl Microbiol 39:466–470PubMedCrossRefGoogle Scholar
  68. Myers CR, Myers JM (2004b) Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant. Appl Environ Microbiol 70:5415–5425PubMedCrossRefGoogle Scholar
  69. Myers JM, Myers CR (2001) Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl Environ Microbiol 67:260–269PubMedCrossRefGoogle Scholar
  70. Myers JM, Myers CR (2002b) Genetic complementation of an outer membrane cytochrome omcB mutant of Shewanella putrefaciens MR-1 requires omcB plus downstream DNA. Appl Environ Microbiol 68:2781–2793PubMedCrossRefGoogle Scholar
  71. Myers JM, Myers CR (2003b) Overlapping role of the outer membrane cytochromes of Shewanella oneidensis MR-1 in the reduction of manganese(IV) oxide. Lett Appl Microbiol 37:21–25PubMedCrossRefGoogle Scholar
  72. Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–97PubMedCrossRefGoogle Scholar
  73. Paquete CM, Saraiva IH, Calcada E, Louro RO (2010) Molecular basis for directional electron transfer. J Biol Chem 285:10370–10375PubMedCrossRefGoogle Scholar
  74. Pauleta SR, Cooper A, Nutley M, Errington N, Harding S, Guerlesquin F, Goodhew CF, Moura I, Moura JJG, Pettigrew GW (2004) A copper protein and a cytochrome bind at the same site on bacterial cytochrome c peroxidase. Biochemistry 43:14566–14576PubMedCrossRefGoogle Scholar
  75. Pessanha M, Rothery EL, Miles CS, Reid GA, Chapman SK, Louro RO, Turner DL, Salgueiro CA, Xavier AV (2009) Tuning of functional heme reduction potentials in Shewanella fumarate reductases. Biochim Biophys Acta 1787:113–120PubMedCrossRefGoogle Scholar
  76. Pitts KE, Dobbin PS, Reyes-Ramirez F, Thomson AJ, Richardson DJ, Seward HE (2003) Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates. J Biol Chem 278:27758–27765PubMedCrossRefGoogle Scholar
  77. Qian Y, Paquete CM, Louro RO, Ross DE, Labelle E, Bond DR, Tien M (2011a) Mapping the iron binding site(s) on the small tetraheme cytochrome of Shewanella oneidensis MR-1. Biochemistry 50:6217–6224PubMedCrossRefGoogle Scholar
  78. Qian Y, Shi L, Tien M (2011b) SO2907, A putative TonB-dependent receptor, is involved in dissimilatory iron reduction by Shewanella oneidensis MR-1. J Biol Chem 286:33973–33980PubMedCrossRefGoogle Scholar
  79. Reardon CL, Dohnalkova AC, Nachimuthu P, Kennedy DW, Saffarini DA, Arey BW, Shi L, Wang Z, Moore D, McLean JS, Moyles D, Marshall MJ, Zachara JM, Fredrickson JK, Beliaev AS (2010) Role of outer-membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by Shewanella oneidensis MR-1. Geobiology 8:56–68PubMedCrossRefGoogle Scholar
  80. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101PubMedCrossRefGoogle Scholar
  81. Richter K, Bücking C, Schicklberger M, Gescher J (2010) A simple and fast method to analyze the orientation of c-type cytochromes in the outer membrane of Gram-negative bacteria. J Microbiol Methods 82:184–186PubMedCrossRefGoogle Scholar
  82. Rodrigues ML, Oliveira TF, Pereira IA, Archer M (2006) X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination. EMBO J 25:5951–5960PubMedCrossRefGoogle Scholar
  83. Romine MF, Carlson TS, Norbeck AD, McCue LA, Lipton MS (2008) Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome. Appl Environ Microbiol 74:3257–3265PubMedCrossRefGoogle Scholar
  84. Ross DE, Ruebush SS, Brantley SL, Hartshorne RS, Clarke TA, Richardson DJ, Tien M (2007) Characterization of protein–protein interactions involved in iron reduction by Shewanella oneidensis MR-1. Appl Environ Microbiol 73:5797–5808PubMedCrossRefGoogle Scholar
  85. Ross DE, Brantley SL, Tien M (2009) Kinetic characterization of terminal reductases OmcA and MtrC involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1. Appl Environ Microbiol 75:5218–5226PubMedCrossRefGoogle Scholar
  86. Saffarini DA, Blumerman SL, Mansoorabadi KJ (2002) Role of menaquinones in Fe(III) reduction by membrane fractions of Shewanella putrefaciens. J Bacteriol 184:846–848PubMedCrossRefGoogle Scholar
  87. Saltikov CW, Newman DK (2003) Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci U S A 100:10983–10988PubMedCrossRefGoogle Scholar
  88. Sambrook J, Fritsch EF, Maniatis T, Russell DW (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  89. Schicklberger M, Bücking C, Schuetz B, Heide H, Gescher J (2010) Involvement of the Shewanella oneidensis decaheme cytochrome MtrA in the periplasmic stability of the beta-barrel protein MtrB. Appl Environ Microbiol 77:1520–1523PubMedCrossRefGoogle Scholar
  90. Schuetz B, Schicklberger M, Kuermann J, Spormann AM, Gescher J (2009) Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Appl Environ Microbiol 75:7789–7796. doi: 10.1128/AEM.01834-09 PubMedCrossRefGoogle Scholar
  91. Schütz B, Seidel J, Sturm G, Einsle O, Gescher J (2011) Investigation of the electron transport chain to and the catalytic activity of the diheme cytochrome c peroxidase CcpA of Shewanella oneidensis. Appl Environ Microbiol 77:6172–6180. doi: 10.1128/AEM.00606-11 PubMedCrossRefGoogle Scholar
  92. Schwalb C, Chapman SK, Reid GA (2002) The membrane-bound tetrahaem c-type cytochrome CymA interacts directly with the soluble fumarate reductase in Shewanella. Biochem Soc Trans 30:658–662PubMedCrossRefGoogle Scholar
  93. Schwalb C, Chapman SK, Reid GA (2003) The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis. Biochemistry 42:9491–9497PubMedCrossRefGoogle Scholar
  94. Scott JH, Nealson KH (1994) A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens. J Bacteriol 176:3408–3411PubMedGoogle Scholar
  95. Shanks RM, Caiazza NC, Hinsa SM, Toutain CM, O’Toole GA (2006) Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol 72:5027–5036PubMedCrossRefGoogle Scholar
  96. Shi L, Chen B, Wang Z, Elias DA, Mayer MU, Gorby YA, Ni S, Lower BH, Kennedy DW, Wunschel DS, Mottaz HM, Marshall MJ, Hill EA, Beliaev AS, Zachara JM, Fredrickson JK, Squier TC (2006) Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J Bacteriol 188:4705–4714PubMedCrossRefGoogle Scholar
  97. Shi L, Deng S, Marshall MJ, Wang Z, Kennedy DW, Dohnalkova AC, Mottaz HM, Hill EA, Gorby YA, Beliaev AS, Richardson DJ, Zachara JM, Fredrickson JK (2008) Direct involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J Bacteriol 190:5512–5516PubMedCrossRefGoogle Scholar
  98. Shirodkar S, Reed S, Romine M, Saffarini D (2011) The octahaem SirA catalyses dissimilatory sulfite reduction in Shewanella oneidensis MR-1. Environ Microbiol 13:108–115PubMedCrossRefGoogle Scholar
  99. Shyu JB, Lies DP, Newman DK (2002) Protective role of tolC in efflux of the electron shuttle anthraquinone-2,6-disulfonate. J Bacteriol 184:1806–1810PubMedCrossRefGoogle Scholar
  100. Sklar JG, Wu T, Kahne D, Silhavy TJ (2007) Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev 21:2473–2484PubMedCrossRefGoogle Scholar
  101. Spiess C, Beil A, Ehrmann M (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97:339–347PubMedCrossRefGoogle Scholar
  102. Sturm G, Gescher J About the periplasmic electron transfer network in S. oneidensis (In preparation)Google Scholar
  103. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedGoogle Scholar
  104. Thormann KM, Saville RM, Shukla S, Pelletier DA, Spormann AM (2004) Initial phases of biofilm formation in Shewanella oneidensis MR-1. J Bacteriol 186:8096–8104PubMedCrossRefGoogle Scholar
  105. Thormann KM, Saville RM, Shukla S, Spormann AM (2005) Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol 187:1014–1021PubMedCrossRefGoogle Scholar
  106. Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320:217–234PubMedCrossRefGoogle Scholar
  107. Uria N, Munoz Berbel X, Sanchez O, Munoz FX, Mas J (2011) Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell. Environ Sci Technol 45(23):10250–10256Google Scholar
  108. Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, Burghardt J, Stackebrandt E, Nealson KH (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49 Pt 2:705–724Google Scholar
  109. von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623CrossRefGoogle Scholar
  110. Yang C, Rodionov DA, Li X, Laikova ON, Gelfand MS, Zagnitko OP, Romine MF, Obraztsova AY, Nealson KH, Osterman AL (2006) Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. J Biol Chem 281:29872–29885PubMedCrossRefGoogle Scholar
  111. Zhang H, Yang F, Qian WJ, Brown RN, Wang Y, Merkley EE, Park JH, Monroe ME, Purvine SO, Moore RJ, Shi L, Fredrickson JK, Pasa-Tolic L, Smith RD, Lipton MS (2011) Identification of c-type heme-containing peptides using nonactivated immobilized metal affinity chromatography resin enrichment and higher-energy collisional dissociation. Anal Chem 83:7260–7268PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Abteilung Angewandte BiologieKarlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations