Skip to main content

The Cognitive Profile of NF1 Children: Therapeutic Implications

  • Chapter
  • First Online:
Neurofibromatosis Type 1

Abstract

Neurofibromatosis type 1 (NF1) is a complex multisystem disorder with an autosomal dominant pattern of inheritance and marked clinical variability. In the last 15 years, there have been a number of studies which have influenced our current understanding of the frequency and nature of cognitive deficits in NF1. Collectively, the studies reviewed here reveal that cognitive impairment, learning difficulties, and behavioural disturbances such as attention deficit hyperactivity disorder (ADHD) are highly prevalent and undoubtedly reflect a perturbation of central nervous system functioning. Neuroimaging studies have provided important insight into the structural and functional brain abnormalities involved which include alternations in brain organisation for language and visuospatial function and increased total brain volume, with additional areas of interest including the corpus callosum, cerebral asymmetries, thalamus, and striatum. Recent studies in animal models are also beginning to provide insights into the underlying biochemical mechanisms including abnormal activation of the Ras–MAPK pathway and alternations in neurotransmitters such as dopamine and GABA. These studies are vital to the development of targeted treatment for cognitive deficits in NF1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta MT, Kardel PG, Walsh KS, Rosenbaum KN, Gioia GA, Packer RJ (2011) Lovastatin as treatment for neurocognitive deficits in neurofibromatosis type 1: phase 1 study. Peadiatr Neurol 45:241–245

    Article  Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Baron IS (2004) Neuropsychological evaluation of the child. Oxford University Press, New York

    Google Scholar 

  • Bawden H, Dooley J, Buckley D, Camfield P, Gordon K, Riding M, Llewellyn G (1996) MRI and nonverbal cognitive deficits in children with neurofibromatosis 1. J Clin Exp Neuropsychol 18:784–792

    Article  PubMed  CAS  Google Scholar 

  • Billingsley RL, Schrimsher GW, Jackson EF, Slopis JM, Moore B (2002) Significance of planum temporale and planum parietale morphologic features in neurofibromatosis type 1. Arch Neurol 59:616–622

    Article  PubMed  Google Scholar 

  • Billingsley RL, Jackson EF, Slopis JM, Swank PR, Mahankali S, Moore BD 3rd (2003a) Functional magnetic resonance imaging of phonologic processing in neurofibromatosis 1. J Child Neurol 18:731–740

    Article  PubMed  Google Scholar 

  • Billingsley RL, Slopis JM, Swank PR, Jackson EF, Moore B (2003b) Cortical morphology associated with language function in neurofibromatosis type 1. Brain Lang 85:125–139

    Article  PubMed  Google Scholar 

  • Billingsley RL, Jackson EF, Slopis JM, Swank PR, Mahankali S, Moore BD (2004) Functional MRI of visual-spatial processing in neurofibromatosis, type I. Neuropsychologia 42:395–404

    Article  PubMed  Google Scholar 

  • Brewer VR, Moore BD 3rd, Hiscock M (1997) Learning disability subtypes in children with neurofibromatosis. J Learn Disabil 30:521–533

    Article  PubMed  CAS  Google Scholar 

  • Brown JA, Emnett RJ, White CR, Yuede CM, Conyers SB, O’Malley KL, Wozniak DF, Gutmann DH (2010a) Reduced striatal dopamine underlies the attention system dysfunction in neurofibromatosis-1 mutant mice. Hum Mol Genet 19:4515–4528

    Article  PubMed  CAS  Google Scholar 

  • Brown JA, Gianino SM, Gutmann DA (2010b) Defective cAMP generation underlies the sensitivity of CNS neurons to neurofibromatosis-1 heterozygosity. J Neurosci 30:5579–5589

    Article  PubMed  CAS  Google Scholar 

  • Chabernaud C, Sirinelli D, Barbier C, Cottier J-P, Sembely C, Giraudeau B, Deseille-Turlotte G, Lorette G, Barthez M-A, Castelnau P (2009) Thalamo-striatal T2-weighted hyperintensities (unidentified bright objects) correlate with cognitive impairments in neurofibromatosis type 1 during childhood. Dev Neuropsychol 34:736–748

    Article  PubMed  Google Scholar 

  • Clements-Stephens AM, Rimrodt SL, Gaur P, Cutting LE (2008) Visuospatial processing in children with neurofibromatosis type 1. Neuropsychologia 46:690–697

    Article  PubMed  Google Scholar 

  • Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ (2002) Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415:526–530

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, Parada LF, Mody I, Silva AJ (2008) Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135:549–560

    Article  PubMed  CAS  Google Scholar 

  • Cutting LE, Levine TM (2010) Cognitive profile of children with neurofibromatosis and reading disabilities. Child Neuropsychol 16:417–432

    Article  PubMed  Google Scholar 

  • Dilts CV, Carey JC, Kircher JC, Hoffman RO, Creel D, Ward K, Clark E, Leonard CO (1996) Children and adolescents with neurofibromatosis 1: a behavioral phenotype. J Dev Behav Pediatr 17:229–239

    Article  PubMed  CAS  Google Scholar 

  • Dubovsky EC, Booth TN, Vezina G, Samango-Sprouse SA, Palmer KM, Brasseux CO (2001) MR imaging of the corpus callosum in paediatric patients with neurofibromatosis type 1. Am J Neuroradiol 22:190–195

    PubMed  CAS  Google Scholar 

  • Durston S (2003) A review of the biological bases of ADHD: what have we learned from imaging studies? Mental Retard Dev Disabil Res Rev 9:184–195

    Article  Google Scholar 

  • Eldridge R, Denckla MB, Bien E, Myers S, Kaiser-Kupfer M, Pikus A, Schlesinger S, Parry D, Dambrosia J, Zasloff M, Mulvihill J (1989) Neurofibromatosis type 1. Am J Dis Child 14:833–837

    Google Scholar 

  • Eliason MJ (1986) Neurofibromatosis: implications for learning and behavior. J Dev Behav Pediatr 7:175–179

    Article  PubMed  CAS  Google Scholar 

  • Ferner RE, Chaudhuri R, Bingham J, Cox T, Hughes RA (1993) MRi in neurofibromatosis 1. The nature and evolution of increased intensity T2 weighted lesions and their relationship to intellectual impairment. J Neurol Neurosurg Psychiatry 56:492–495

    Article  PubMed  CAS  Google Scholar 

  • Ferner RE, Hughes RA, Weinman J (1996) Intellectual impairment in neurofibromatosis 1. J Neurol Sci 138:125–133

    Article  PubMed  CAS  Google Scholar 

  • Fowler KS, Saling MM, Conway EL, Semple JM, Louis WJ (2002) Paired associate performance in the early detection of DAT. J Int Neuropsychol Soc 8:58–71

    Article  PubMed  Google Scholar 

  • Goh W, Khong P, Leung C, Wong V (2004) T2-weighted hyperintensities (unidentified bright objects) in children with neurofibromatosis 1: the impact of cognitive function. Neurology 19:853–858

    Google Scholar 

  • Greenwood RS, Tupler LA, Whitt JK, Buu A, Dombeck CB, Harp AG, Payne ME, Eastwood JE, Krishnan KR, MacFall JR (2005) Brain morphometry, T2-weighted hyperintensities, and IQ in children with neurofibromatosis type 1. Arch Neurol 62:1904–1908

    Article  PubMed  Google Scholar 

  • Harnadek MCS, Rourke BP (1994) Principal identifying features of the syndrome of non-verbal learning disabilities in children. J Learn Dis 27:144–154

    Article  CAS  Google Scholar 

  • Hofman KJ, Harris EL, Bryan RN, Denckla MB (1994) Neurofibromatosis type 1: the cognitive phenotype. J Paediatr 124:S1–S8

    Article  CAS  Google Scholar 

  • Huijbregts S, Swaab H, de Sonneville L (2010) Cognitive and motor control in neurofibromatosis type I: influence of maturation and hyperactivity-inattention. Dev Neuropsychol 35:737–751

    Article  PubMed  Google Scholar 

  • Huson SM, Harper PS, Compston DA (1988) Von Recklinghausen neurofibromatosis A clinical and population study in south-east Wales. Brain 111:1355–1381

    Article  PubMed  Google Scholar 

  • Hyman SL, Shores A, North K (2005) The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology 65:1037–1044

    Article  PubMed  Google Scholar 

  • Hyman SL, Shores EA, North K (2006) Learning disabilities in children with neurofibromatosis type 1: subtypes, cognitive profile, and attention-deficit-hyperactivity disorder. Dev Med Child Neurol 48:973–977

    Article  PubMed  Google Scholar 

  • Hyman SL, Gill DS, Shores EA, Steinberg A, North K (2007) T2 hyperintensities in children with neurofibromatosis type 1 and their relationship to cognitive functioning. J Neurol Neurosurg Psychiatry 78:1088–1091

    Article  PubMed  Google Scholar 

  • Joy P, Roberts C, North K, de Silva M (1995) Neuropsychological function and MRI abnormalities in neurofibromatosis type 1. Dev Med Child Neurol 37:906–914

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER, Kupferman I, Iverson S (2000) Learning and memory. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  • Kayl AE, Moore BD, Slopis JM, Jackson EF, Leeds NE (2000) Quantitative morphology of the corpus callosum in children with neurofibromatosis and attention-deficit hyperactivity disorder. J Child Neurol 15:90–95

    Article  PubMed  CAS  Google Scholar 

  • Koth CW, Cutting LE, Denckla MB (2000) The association of neurofibromatosis type 1 and attention deficit hyperactivity disorder. Child Neuropsychol 6:185–194

    Article  PubMed  CAS  Google Scholar 

  • Legius EM, Descheemaeker MJ, Steyaert J (1995) Neurofibromatosis type 1 in childhood: correlation of MRI findings with intelligence. Neurology 59:638–640

    CAS  Google Scholar 

  • Levine TM, Materek A, Abel J, O’Donnell M, Cutting LE (2006) Cognitive profile of neurofibromatosis type 1. Semin Pediatr Neurol 13:8–20

    Article  PubMed  Google Scholar 

  • Lezak MD, Howieson DB, Loring DW (2004) Neuropsychological assessment, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, Cannon TD, Silva AJ (2005) The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol 15:1961–1967

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo J, Barton B, Acosta MT, North K (2011) Mental, motor, and language development of toddlers with neurofibromatosis type 1. J Pediatr 158(4):660–665

    Article  PubMed  Google Scholar 

  • Mautner VF, Kluwe L, Thakker SD, Leark RA (2002) Treatment of ADHD in neurofibromatosis type 1. Dev Med Child Neurol 44(3):164–170

    Article  PubMed  Google Scholar 

  • Mazzocco MMM, Turner JE, Denckla MB, Hofman KJ, Scanlon DC, Vellutino FR (1995) Language and reading deficits associated with neurofibromatosis type 1: evidence for a not-so-nonverbal learning disability. Dev Neuropsychol 11:503–522

    Article  Google Scholar 

  • Moore BD 3rd, Slopis JM, Schomer D, Jackson EF, Levy BM (1996) Neuropsychological significance of areas of high signal intensity on brain MRIs of children with neurofibromatosis. Neurology 46:1660–1668

    Article  PubMed  CAS  Google Scholar 

  • Moore BD 3rd, Slopis JM, Jackson EF, De Winter AE, Leeds NE (2000) Brain volume in children with neurofibromatosis type 1: relation to neuropsychological status. Neurology 54:914–920

    Article  PubMed  Google Scholar 

  • North K (2000) Neurofibromatosis type 1. Am J Med Genet 97:119–127

    Article  PubMed  CAS  Google Scholar 

  • North K, Joy P, Yuille D, Cocks N, Mobbs E, Hutchins P, McHugh K, de Silva M (1994) Specific learning disability in children with neurofibromatosis type 1: significance of MRI abnormalities. Neurology 44:878–883

    Article  PubMed  CAS  Google Scholar 

  • North K, Joy P, Yuille D, Cocks N, Hutchins P (1995) Cognitive function and academic performance in children with neurofibromatosis type 1. Dev Med Child Neurol 37:427–436

    Article  PubMed  CAS  Google Scholar 

  • North K, Riccardi V, Samango-Sprouse C, Ferner R, Moore B, Legius E, Ratner N, Denckla MB (1997) Cognitive function and academic performance in neurofibromatosis. 1: consensus statement from the NF1 Cognitive Disorders Task Force. Neurology 48:1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Payne JM, Barton B, Shores EA, North KN (2012) Paired associate learning in children with neurofibromatosis type1: implications for clinical trials. J Neurol (Epub ahead of print)

    Google Scholar 

  • Payne JM, Hyman SL, Shores EA, North K (2011) Assessment of executive function and attention in children with neurofibromatosis type 1: relationships between cognitive measures and real-world behavior. Child Neuropsychol 17(4):313–329

    Article  PubMed  Google Scholar 

  • Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164:942–948

    Article  PubMed  Google Scholar 

  • Pride N, Payne JM, Webster R, Shores EA, Rae C, North K (2010) Corpus callosum morphology and its relationship to cognitive function in neurofibromatosis type 1. J Child Neurol 25:834–841

    Article  PubMed  Google Scholar 

  • Rowbotham I, Pit-ten Cate IM, Sonuga-Barke EJS, Huijbregts SCJ (2009) Cognitive control in adolescents with neurofibromatosis type 1. Neuropsychology 23:50–60

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Roulin JL, Charbonnier V, Allain P, Fasotti L, Barbarot S, Stalder JF, Terrien A, Le Gall D (2010) Executive dysfunction in children with neurofibromatosis type 1. A study of action planning. J Int Neuropsychol Soc 16:1056–1063

    Article  PubMed  Google Scholar 

  • Said SM, Yeh TL, Greenwood RS, Whitt JK, Tupler LA, Krishnan KR (1996) MRI morphometric analysis and neuropsychological function in patients with neurofibromatosis. Neuroreport 7(12):1941–1944

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson B, Axelsson R (1981) Neurofibromatosis. A clinical and genetic study of 96 cases in Gothenburg, Sweden. Acta Derm Venereol Suppl 95:67–71

    CAS  Google Scholar 

  • Sangster J, Shores EA, Watt S, North K (2011) The cognitive profile of preschool-aged children with neurofibromatosis type 1. Child Neuropsychol 17(1):1–16

    Article  PubMed  Google Scholar 

  • Schrimsher GW, Billingsley RL, Slopis JM, Moore B (2003) Visual-spatial performance deficits as a diagnostic indicator in children with neurofibromatosis type-1. Am J Med Genet 120A:326–330

    Article  PubMed  Google Scholar 

  • Shaywitz SE, Shaywitz BA, Pugh KR, Fulbright RK, Constable RT, Mencl WE, Shankweiler DP, Liberman AM, Skudlarski P, Fletcher JM (1998) Functional disruption in the organisation of the brain for reading in dyslexia. Proc Natl Acad Sci USA 95:2636–2641

    Article  PubMed  CAS  Google Scholar 

  • Shilyansky C, Karlsgodt KH, Cummings DM, Sidiropoulou K, Hardt M, James AS, Ehninger D, Bearden CE, Poirazi P, Jentsch JD, Cannon TD, Levine MS, Silva AJ (2010a) Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proc Natl Acad Sci USA 107:13141–13146

    Article  PubMed  CAS  Google Scholar 

  • Shilyansky C, Lee YS, Silva AJ (2010b) Molecular and cellular mechanisms of learning disabilities: a focus on NF1. Annu Rev Neurosci 33:221–243

    Article  PubMed  CAS  Google Scholar 

  • Silva AJ, Frankland PW, Marowitz Z, Friedman E, Laszlo GS, Cioffi D, Jacks T, Bourtchuladze R (1997) A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat Genet 15:281–284

    Article  PubMed  CAS  Google Scholar 

  • Taffe MA, Weed MR, Gutierrez T, Davis SA, Gold LH (2002) Differential muscarinic and MD contributions to visor-spatial paired-associate learning in rhesus monkeys. Psychopharmacology (Berl) 160:253–262

    Article  CAS  Google Scholar 

  • Thompson HL, Viskochil D, Stevemson DA, Chapman KL (2010) Speech-language characteristics of children with neurofibromatosis type 1. J Med Genet 152A:284–290

    Article  Google Scholar 

  • Ullrich NJ, Ayr L, Leaffer E, Irons MB, Rey-Casserly C (2010) Pilot study of a novel computerised task to assess spatial learning in children and adolescents with neurofibromatosis type 1. J Child Neurol 2010:1195–1202

    Article  Google Scholar 

  • Wang PY, Kaufmann WE, Koth CW, Denckla MB, Barker PB (2000) Thalamic involvement in neurofibromatosis type 1: evaluation with proton MR spectroscopic imaging. Ann Neurol 47:477–484

    Article  PubMed  CAS  Google Scholar 

  • Watt SE, Shores A, North K (2008) An examination of lexical and sublexical reading skills in children with neurofibromatosis type 1. Child Neuropsychol 14:401–418

    Article  PubMed  Google Scholar 

  • Zoller ME, Rembeck B, Backman L (1997) Neuropsychological deficits in adults with neurofibromatosis type 1. Acta Neurol Scand 95:225–232

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn N. North .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pride, N.A., North, K.N. (2012). The Cognitive Profile of NF1 Children: Therapeutic Implications. In: Upadhyaya, M., Cooper, D. (eds) Neurofibromatosis Type 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32864-0_5

Download citation

Publish with us

Policies and ethics