Skip to main content

Neurofibromin: Protein Domains and Functional Characteristics

  • Chapter
  • First Online:

Abstract

The tumor suppressor gene NF1 encodes the giant signal regulator neurofibromin (320 kDa) that is nonfunctional in NF1 patients due to gene alterations. Neurofibromin is a Ras-specific GTPase activating protein (RasGAP) which downregulates the biological activity of activated Ras via a central GAP-related domain (GRD). Adjacent to its carboxy terminal end, a bipartite glycerophospholipid binding module has been discovered that comprises a Sec14- and a pleckstrin homology (PH)-like domain. While a number of interaction partners of neurofibromin have been reported, the RasGAP activity currently appears to represent the only clearly defined biochemical function of this giant protein. This chapter is focused on current knowledge about neurofibromin domains that are structurally validated. Functional and regulatory features will be briefly addressed and the potential impact of non-truncating NF1 mutations detected in patients will be discussed in the light of available three-dimensional structural information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acosta MT, Gioia GA, Silva AJ (2006) Neurofibromatosis type 1: new insights into neurocognitive issues. Curr Neurol Neurosci Rep 6(2):136–143

    Article  PubMed  CAS  Google Scholar 

  • Ahmadian MR, Wiesmuller L, Lautwein A et al (1996) Structural differences in the minimal catalytic domains of the GTPase- activating proteins p120GAP and neurofibromin. J Biol Chem 271(27):16409–16415

    Article  PubMed  CAS  Google Scholar 

  • Ahmadian MR, Hoffmann U, Goody RS et al (1997a) Individual rate constants for the interaction of Ras proteins with GTPase-activating proteins determined by fluorescence spectroscopy. Biochemistry (Mosc) 36(15):4535–4541

    Article  CAS  Google Scholar 

  • Ahmadian MR, Stege P, Scheffzek K et al (1997b) Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat Struct Biol 4(9):686–689

    Article  PubMed  CAS  Google Scholar 

  • Ahmadian MR, Kiel C, Stege P et al (2003) Structural fingerprints of the Ras-GTPase activating proteins neurofibromin and p120GAP. J Mol Biol 329(4):699–710

    Article  PubMed  CAS  Google Scholar 

  • Amlacher S, Sarges P, Flemming D et al (2011) Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146(2):277–289

    Article  PubMed  CAS  Google Scholar 

  • Andersen LB, Ballester R, Marchuk DA et al (1993) A conserved alternative splice in the von Recklinghausen neurofibromatosis (NF1) gene produces two neurofibromin isoforms, both of which have GTPase-activating protein activity. Mol Cell Biol 13(1):487–495

    PubMed  CAS  Google Scholar 

  • Aravind L, Neuwald AF, Ponting CP (1999) Sec14p-like domains in NF1 and Dbl-like proteins indicate lipid regulation of Ras and Rho signaling [letter]. Curr Biol 9(6):R195–R197

    Article  PubMed  CAS  Google Scholar 

  • Ars E, Kruyer H, Morell M et al (2003) Recurrent mutations in the NF1 gene are common among neurofibromatosis type 1 patients. J Med Genet 40(6):e82

    Article  PubMed  CAS  Google Scholar 

  • Ballester R, Marchuk D, Boguski M et al (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63(4):851–859

    Article  PubMed  CAS  Google Scholar 

  • Bankaitis VA, Mousley CJ, Schaaf G (2010) The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. Trends Biochem Sci 35(3):150–160

    Article  PubMed  CAS  Google Scholar 

  • Barron VA, Lou H (2012) Alternative splicing of the neurofibromatosis type I pre-mRNA. Biosci Rep 32(2):131–138

    Article  PubMed  CAS  Google Scholar 

  • Basu TN, Gutmann DH, Fletcher JA et al (1992) Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients [see comments]. Nature 356(6371):713–715

    Article  PubMed  CAS  Google Scholar 

  • Bausch B, Borozdin W, Mautner VF et al (2007) Germline NF1 mutational spectra and loss-of-heterozygosity analyses in patients with pheochromocytoma and neurofibromatosis type 1. J Clin Endocrinol Metab 92(7):2784–2792

    Article  PubMed  CAS  Google Scholar 

  • Bell D, Berchuck A, Birrer M et al (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–615

    Article  CAS  Google Scholar 

  • Bernards A (2003) GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta 1603(2):47–82

    PubMed  CAS  Google Scholar 

  • Bernards A, Snijders AJ, Hannigan GE et al (1993) Mouse neurofibromatosis type 1 cDNA sequence reveals high degree of conservation of both coding and non-coding mRNA segments. Hum Mol Genet 2(6):645–650

    Article  PubMed  CAS  Google Scholar 

  • Bollag G, McCormick F (1991) Differential regulation of rasGAP and neurofibromatosis gene product activities. Nature 351(6327):576–579

    Article  PubMed  CAS  Google Scholar 

  • Bollag G, McCormick F, Clark R (1993) Characterization of full-length neurofibromin: tubulin inhibits Ras GAP activity. EMBO J 12(5):1923–1927

    PubMed  CAS  Google Scholar 

  • Bollag G, Adler F, elMasry N et al (1996a) Biochemical characterization of a novel KRAS insertion mutation from a human leukemia. J Biol Chem 271(51):32491–32494

    Article  PubMed  CAS  Google Scholar 

  • Bollag G, Clapp DW, Shih S et al (1996b) Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 12(2):144–148

    Article  PubMed  CAS  Google Scholar 

  • Bomar JM, Benke PJ, Slattery EL et al (2003) Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse. Nat Genet 35(3):264–269

    Article  PubMed  CAS  Google Scholar 

  • Bonneau F, D’Angelo I, Welti S et al (2004) Expression, purification and preliminary crystallographic characterization of a novel segment from the neurofibromatosis type 1 protein. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 2):2364–2367

    Article  PubMed  CAS  Google Scholar 

  • Bos JL, Fearon ER, Hamilton SR et al (1987) Prevalence of ras gene mutations in human colorectal cancers. Nature 327(6120):293–297

    Article  PubMed  CAS  Google Scholar 

  • Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877

    Article  PubMed  CAS  Google Scholar 

  • Boyanapalli M, Lahoud OB, Messiaen L et al (2006) Neurofibromin binds to caveolin-1 and regulates ras, FAK, and Akt. Biochem Biophys Res Commun 340(4):1200–1208

    Article  PubMed  CAS  Google Scholar 

  • Brinckmann A, Mischung C, Bassmann I et al (2007) Detection of novel NF1 mutations and rapid mutation prescreening with pyrosequencing. Electrophoresis 28(23):4295–4301

    Article  PubMed  CAS  Google Scholar 

  • Buchberg AM, Cleveland LS, Jenkins NA et al (1990) Sequence homology shared by neurofibromatosis type-1 gene and IRA-1 and IRA-2 negative regulators of the RAS cyclic AMP pathway. Nature 347(6290):291–294

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Fan Z, Liu Q et al (2005) Two novel mutations of the NF1 gene in Chinese Han families with type 1 neurofibromatosis. J Dermatol Sci 39(2):125–127

    Article  PubMed  CAS  Google Scholar 

  • Cawthon RM, Weiss R, Xu GF et al (1990) A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62(1):193–201

    Article  PubMed  CAS  Google Scholar 

  • Cichowski K, Jacks T (2001) NF1 tumor suppressor gene function: narrowing the GAP. Cell 104(4):593–604

    Article  PubMed  CAS  Google Scholar 

  • Cichowski K, Santiago S, Jardim M et al (2003) Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor. Genes Dev 17(4):449–454

    Article  PubMed  CAS  Google Scholar 

  • Costa RM, Yang T, Huynh DP et al (2001) Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of Nf1. Nat Genet 27(4):399–405

    Article  PubMed  CAS  Google Scholar 

  • Costa RM, Federov NB, Kogan JH et al (2002) Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415(6871):526–530

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Costa RM, Murphy GG et al (2008) Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135(3):549–560

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo I, Welti S, Bonneau F et al (2006) A novel bipartite phospholipid-binding module in the neurofibromatosis type 1 protein. EMBO Rep 7(2):174–179

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta B, Gutmann DH (2003) Neurofibromatosis 1: closing the GAP between mice and men. Curr Opin Genet Dev 13(1):20–27

    Article  PubMed  CAS  Google Scholar 

  • Daston MM, Ratner N (1992) Neurofibromin, a predominantly neuronal GTPase activating protein in the adult, is ubiquitously expressed during development. Dev Dyn 195(3):216–226

    Article  PubMed  CAS  Google Scholar 

  • Daston MM, Scrable H, Nordlund M et al (1992) The protein product of the neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells, and oligodendrocytes. Neuron 8(3):415–428

    Article  PubMed  CAS  Google Scholar 

  • De Luca A, Buccino A, Gianni D et al (2003) NF1 gene analysis based on DHPLC. Hum Mutat 21(2):171–172

    Article  PubMed  CAS  Google Scholar 

  • De Luca A, Bottillo I, Sarkozy A et al (2005) NF1 gene mutations represent the major molecular event underlying neurofibromatosis-Noonan syndrome. Am J Hum Genet 77(6):1092–1101

    Article  PubMed  Google Scholar 

  • De Schepper S, Boucneau JM, Westbroek W et al (2006) Neurofibromatosis type 1 protein and amyloid precursor protein interact in normal human melanocytes and colocalize with melanosomes. J Invest Dermatol 126(3):653–659

    Article  PubMed  CAS  Google Scholar 

  • DeClue JE, Cohen BD, Lowy DR (1991) Identification and characterization of the neurofibromatosis type 1 protein product. Proc Natl Acad Sci USA 88(22):9914–9918

    Article  PubMed  CAS  Google Scholar 

  • DeClue JE, Papageorge AG, Fletcher JA et al (1992) Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69(2):265–273

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Getz G, Wheeler DA et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455(7216):1069–1075

    Article  PubMed  CAS  Google Scholar 

  • Fahsold R, Hoffmeyer S, Mischung C et al (2000) Minor lesion mutational spectrum of the entire NF1 gene does not explain its high mutability but points to a functional domain upstream of the GAP-related domain. Am J Hum Genet 66(3):790–818

    Article  PubMed  CAS  Google Scholar 

  • Feldkamp MM, Angelov L, Guha A (1999) Neurofibromatosis type 1 peripheral nerve tumors: aberrant activation of the Ras pathway. Surg Neurol 51(2):211–218

    Article  PubMed  CAS  Google Scholar 

  • Feng L, Yunoue S, Tokuo H et al (2004) PKA phosphorylation and 14-3-3 interaction regulate the function of neurofibromatosis type I tumor suppressor, neurofibromin. FEBS Lett 557(1–3):275–282

    Article  PubMed  CAS  Google Scholar 

  • Ferner RE, Hughes RA, Weinman J (1996) Intellectual impairment in neurofibromatosis 1. J Neurol Sci 138(1–2):125–133

    Article  PubMed  CAS  Google Scholar 

  • Ferner RE, Hughes RA, Hall SM et al (2004) Neurofibromatous neuropathy in neurofibromatosis 1 (NF1). J Med Genet 41(11):837–841

    Article  PubMed  CAS  Google Scholar 

  • Fishman GA, Roberts MF, Derlacki DJ et al (2004) Novel mutations in the cellular retinaldehyde-binding protein gene (RLBP1) associated with retinitis punctata albescens: evidence of interfamilial genetic heterogeneity and fundus changes in heterozygotes. Arch Ophthalmol 122(1):70–75

    Article  PubMed  CAS  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422(6934):859–868

    Article  PubMed  CAS  Google Scholar 

  • Godin F, Villette S, Vallee B et al (2012) A fraction of neurofibromin interacts with PML bodies in the nucleus of the CCF astrocytoma cell line. Biochem Biophys Res Commun 418(4):689–694

    Article  PubMed  CAS  Google Scholar 

  • Gregory PE, Gutmann DH, Mitchell A et al (1993) Neurofibromatosis type 1 gene product (neurofibromin) associates with microtubules. Somat Cell Mol Genet 19(3):265–274

    Article  PubMed  CAS  Google Scholar 

  • Grewal T, Koese M, Tebar F et al (2011) Differential regulation of RasGAPs in cancer. Genes Cancer 2(3):288–297

    Article  PubMed  CAS  Google Scholar 

  • Griffiths S, Thompson P, Frayling I et al (2007) Molecular diagnosis of neurofibromatosis type 1: 2 years experience. Fam Cancer 6(1):21–34

    Article  PubMed  CAS  Google Scholar 

  • Guha A, Lau N, Huvar I et al (1996) Ras-GTP levels are elevated in human NF1 peripheral nerve tumors. Oncogene 12(3):507–513

    PubMed  CAS  Google Scholar 

  • Guo HF, Tong J, Hannan F et al (2000) A neurofibromatosis-1-regulated pathway is required for learning in Drosophila [see comments]. Nature 403(6772):895–898

    Article  PubMed  CAS  Google Scholar 

  • Gutmann DH, Wood DL, Collins FS (1991) Identification of the neurofibromatosis type 1 gene product. Proc Natl Acad Sci USA 88(21):9658–9662

    Article  PubMed  CAS  Google Scholar 

  • Hakimi MA, Speicher DW, Shiekhattar R (2002) The motor protein kinesin-1 links neurofibromin and merlin in a common cellular pathway of neurofibromatosis. J Biol Chem 277(40):36909–36912

    Article  PubMed  CAS  Google Scholar 

  • Han JW, McCormick F, Macara IG (1991) Regulation of Ras-GAP and the neurofibromatosis-1 gene product by eicosanoids. Science 252(5005):576–579

    Article  PubMed  CAS  Google Scholar 

  • Han SS, Cooper DN, Upadhyaya MN (2001) Evaluation of denaturing high performance liquid chromatography (DHPLC) for the mutational analysis of the neurofibromatosis type 1 (NF1) gene. Hum Genet 109(5):487–497

    Article  PubMed  CAS  Google Scholar 

  • Harrisingh MC, Lloyd AC (2004) Ras/Raf/ERK signalling and NF1. Cell Cycle 3(10):1255–1258

    Article  PubMed  CAS  Google Scholar 

  • He X, Lobsiger J, Stocker A (2009) Bothnia dystrophy is caused by domino-like rearrangements in cellular retinaldehyde-binding protein mutant R234W. Proc Natl Acad Sci USA 106(44):18545–18550

    Article  PubMed  CAS  Google Scholar 

  • Hegedus B, Dasgupta B, Shin JE et al (2007) Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell 1(4):443–457

    Article  PubMed  CAS  Google Scholar 

  • Ho IS, Hannan F, Guo HF et al (2007) Distinct functional domains of neurofibromatosis type 1 regulate immediate versus long-term memory formation. J Neurosci 27(25):6852–6857

    Article  PubMed  CAS  Google Scholar 

  • Hsueh YP, Roberts AM, Volta M et al (2001) Bipartite interaction between neurofibromatosis type I protein (neurofibromin) and syndecan transmembrane heparan sulfate proteoglycans. J Neurosci 21(11):3764–3770

    PubMed  CAS  Google Scholar 

  • Hudson J, Wu CL, Tassabehji M et al (1997) Novel and recurrent mutations in the neurofibromatosis type 1 (NF1) gene. Hum Mutat 9(4):366–367

    Article  PubMed  CAS  Google Scholar 

  • Huynh H, Wang X, Li W et al (2003) Homotypic secretory vesicle fusion induced by the protein tyrosine phosphatase MEG2 depends on polyphosphoinositides in T cells. J Immunol 171(12):6661–6671

    PubMed  CAS  Google Scholar 

  • Izawa I, Tamaki N, Saya H (1996) Phosphorylation of neurofibromatosis type 1 gene product (neurofibromin) by cAMP-dependent protein kinase. FEBS Lett 382(1–2):53–59

    Article  PubMed  CAS  Google Scholar 

  • Jeong SY, Park SJ, Kim HJ (2006) The spectrum of NF1 mutations in Korean patients with neurofibromatosis type 1. J Korean Med Sci 21(1):107–112

    Article  PubMed  CAS  Google Scholar 

  • Johannessen CM, Reczek EE, James MF et al (2005) The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci USA 102(24):8573–8578

    Article  PubMed  CAS  Google Scholar 

  • Johnson MR, Look AT, DeClue JE et al (1993) Inactivation of the NF1 gene in human melanoma and neuroblastoma cell lines without impaired regulation of GTP.Ras. Proc Natl Acad Sci USA 90(12):5539–5543

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann D, Muller R, Bartelt B et al (2001) Spinal neurofibromatosis without cafe-au-lait macules in two families with null mutations of the NF1 gene. Am J Hum Genet 69(6):1395–1400

    Article  PubMed  CAS  Google Scholar 

  • Kehrer-Sawatzki H, Maier C, Moschgath E et al (1998) Genomic characterization of the neurofibromatosis type 1 gene of Fugu rubripes. Gene 222(1):145–153

    Article  PubMed  CAS  Google Scholar 

  • Kim HA, Rosenbaum T, Marchionni MA et al (1995) Schwann cells from neurofibromin deficient mice exhibit activation of p21ras, inhibition of cell proliferation and morphological changes. Oncogene 11(2):325–335

    PubMed  CAS  Google Scholar 

  • Klose A, Ahmadian MR, Schuelke M et al (1998) Selective disactivation of neurofibromin GAP activity in neurofibromatosis type 1. Hum Mol Genet 7(8):1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Kluwe L, Friedrich RE, Peiper M et al (2003a) Constitutional NF1 mutations in neurofibromatosis 1 patients with malignant peripheral nerve sheath tumors. Hum Mutat 22(5):420

    Article  PubMed  CAS  Google Scholar 

  • Kluwe L, Tatagiba M, Funsterer C et al (2003b) NF1 mutations and clinical spectrum in patients with spinal neurofibromas. J Med Genet 40(5):368–371

    Article  PubMed  CAS  Google Scholar 

  • Kostenko EV, Mahon GM, Cheng L et al (2004) The Sec14 homology domain regulates the cellular distribution and transforming activity of the Rho-specific guanine nucleotide exchange factor, Dbs. J Biol Chem 280(4):2807–2817

    Article  PubMed  CAS  Google Scholar 

  • Krkljus S, Abernathy CR, Johnson JS et al (1998) Analysis of CpG C-to-T mutations in neurofibromatosis type 1. Mutations in brief no. 129. Online. Hum Mutat 11(5):411

    Google Scholar 

  • Kweh F, Zheng M, Kurenova E et al (2009) Neurofibromin physically interacts with the N-terminal domain of focal adhesion kinase. Mol Carcinog 48(11):1005–1017

    Article  PubMed  CAS  Google Scholar 

  • Lau N, Feldkamp MM, Roncari L et al (2000) Loss of neurofibromin is associated with activation of RAS/MAPK and PI3-K/AKT signaling in a neurofibromatosis 1 astrocytoma. J Neuropathol Exp Neurol 59(9):759–767

    PubMed  CAS  Google Scholar 

  • Lee MJ, Su YN, You HL et al (2006) Identification of forty-five novel and twenty-three known NF1 mutations in Chinese patients with neurofibromatosis type 1. Hum Mutat 27(8):832

    Article  PubMed  Google Scholar 

  • Lemmon MA (2004) Pleckstrin homology domains: not just for phosphoinositides. Biochem Soc Trans 32(Pt 5):707–711

    PubMed  CAS  Google Scholar 

  • Lemmon MA, Ferguson KM (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 350(Pt 1):1–18

    Article  PubMed  CAS  Google Scholar 

  • Leondaritis G, Petrikkos L, Mangoura D (2009) Regulation of the Ras-GTPase activating protein neurofibromin by C-tail phosphorylation: implications for protein kinase C/Ras/extracellular signal-regulated kinase 1/2 pathway signaling and neuronal differentiation. J Neurochem 109(2):573–583

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Bollag G, Clark R et al (1992) Somatic mutations in the neurofibromatosis 1 gene in human tumors. Cell 69(2):275–281

    Article  PubMed  CAS  Google Scholar 

  • Li C, Cheng Y, Gutmann DA et al (2001) Differential localization of the neurofibromatosis 1 (NF1) gene product, neurofibromin, with the F-actin or microtubule cytoskeleton during differentiation of telencephalic neurons. Brain Res Dev Brain Res 130(2):231–248

    Article  PubMed  CAS  Google Scholar 

  • Lin YL, Hsueh YP (2008) Neurofibromin interacts with CRMP-2 and CRMP-4 in rat brain. Biochem Biophys Res Commun 369(2):747–752

    Article  PubMed  CAS  Google Scholar 

  • Lush ME, Li Y, Kwon CH et al (2008) Neurofibromin is required for barrel formation in the mouse somatosensory cortex. J Neurosci 28(7):1580–1587

    Article  PubMed  CAS  Google Scholar 

  • Mangoura D, Sun Y, Li C et al (2006) Phosphorylation of neurofibromin by PKC is a possible molecular switch in EGF receptor signaling in neural cells. Oncogene 25(5):735–745

    Article  PubMed  CAS  Google Scholar 

  • Martin GA, Viskochil D, Bollag G et al (1990) The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63(4):843–849

    Article  PubMed  CAS  Google Scholar 

  • Mattocks C, Baralle D, Tarpey P et al (2004) Automated comparative sequence analysis identifies mutations in 89 % of NF1 patients and confirms a mutation cluster in exons 11-17 distinct from the GAP related domain. J Med Genet 41(4):e48

    Article  PubMed  CAS  Google Scholar 

  • Maw MA, Kennedy B, Knight A et al (1997) Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet 17(2):198–200

    Article  PubMed  CAS  Google Scholar 

  • McLendon R, Friedman A, Bigner D et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

    Article  CAS  Google Scholar 

  • Meier R, Tomizaki T, Schulze-Briese C et al (2003) The molecular basis of vitamin E retention: structure of human alpha-tocopherol transfer protein. J Mol Biol 331(3):725–734

    Article  PubMed  CAS  Google Scholar 

  • Messiaen LM, Callens T, Mortier G et al (2000) Exhaustive mutation analysis of the NF1 gene allows identification of 95 % of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 15(6):541–555

    Article  PubMed  CAS  Google Scholar 

  • Min KC, Kovall RA, Hendrickson WA (2003) Crystal structure of human alpha-tocopherol transfer protein bound to its ligand: implications for ataxia with vitamin E deficiency. Proc Natl Acad Sci USA 100(25):14713–14718

    Article  PubMed  CAS  Google Scholar 

  • Mittal R, Ahmadian MR, Goody RS et al (1996) Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins. Science 273(5271):115–117

    Article  PubMed  CAS  Google Scholar 

  • Nishi T, Lee PS, Oka K et al (1991) Differential expression of two types of the neurofibromatosis type 1 (NF1) gene transcripts related to neuronal differentiation. Oncogene 6(9):1555–1559

    PubMed  CAS  Google Scholar 

  • North K (2000) Neurofibromatosis type 1. Am J Med Genet 97(2):119–127

    Article  PubMed  CAS  Google Scholar 

  • Nystrom AM, Ekvall S, Allanson J et al (2009) Noonan syndrome and neurofibromatosis type I in a family with a novel mutation in NF1. Clin Genet 76(6):524–534

    Article  PubMed  CAS  Google Scholar 

  • Ouahchi K, Arita M, Kayden H et al (1995) Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet 9(2):141–145

    Article  PubMed  CAS  Google Scholar 

  • Ozawa T, Araki N, Yunoue S et al (2005) The neurofibromatosis type 1 gene product neurofibromin enhances cell motility by regulating actin filament dynamics via the Rho-ROCK-LIMK2-cofilin pathway. J Biol Chem 280(47):39524–39533

    Article  PubMed  CAS  Google Scholar 

  • Ozonoff S (1999) Cognitive impairment in neurofibromatosis type 1. Am J Med Genet 89(1):45–52

    Article  PubMed  CAS  Google Scholar 

  • Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Castroviejo I, Pascual-Pascual SI, Velazquez-Fragua R et al (2007) Familial spinal neurofibromatosis. Neuropediatrics 38(2):105–108

    Article  PubMed  CAS  Google Scholar 

  • Patrakitkomjorn S, Kobayashi D, Morikawa T et al (2008) Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via its associating protein, CRMP-2. J Biol Chem 283(14):9399–9413

    Article  PubMed  CAS  Google Scholar 

  • Peters H, Hess D, Fahsold R et al (1999) A novel mutation L1425P in the GAP-region of the NF1 gene detected by temperature gradient gel electrophoresis (TGGE). Mutation in brief no. 230. Online. Hum Mutat 13(4):337

    Google Scholar 

  • Peterson FC, Volkman BF (2009) Diversity of polyproline recognition by EVH1 domains. Front Biosci 14:833–846

    Article  PubMed  CAS  Google Scholar 

  • Phan VT, Ding VW, Li F et al (2010) The RasGAP proteins Ira2 and neurofibromin are negatively regulated by Gpb1 in yeast and ETEA in humans. Mol Cell Biol 30(9):2264–2279

    Article  PubMed  CAS  Google Scholar 

  • Phillips SE, Vincent P, Rizzieri KE et al (2006) The diverse biological functions of phosphatidylinositol transfer proteins in eukaryotes. Crit Rev Biochem Mol Biol 41(1):21–49

    Article  PubMed  CAS  Google Scholar 

  • Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of ras mutations in cancer. Cancer Res 72(10):2457–2467

    Article  PubMed  CAS  Google Scholar 

  • Purandare SM, Lanyon WG, Connor JM (1994) Characterisation of inherited and sporadic mutations in neurofibromatosis type-1. Hum Mol Genet 3(7):1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761–774

    Article  PubMed  CAS  Google Scholar 

  • Rocks O, Peyker A, Kahms M et al (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307(5716):1746–1752

    Article  PubMed  CAS  Google Scholar 

  • Rocks O, Peyker A, Bastiaens PI (2006) Spatio-temporal segregation of Ras signals: one ship, three anchors, many harbors. Curr Opin Cell Biol 18(4):351–357

    Article  PubMed  CAS  Google Scholar 

  • Romero MI, Lin L, Lush ME et al (2007) Deletion of Nf1 in neurons induces increased axon collateral branching after dorsal root injury. J Neurosci 27(8):2124–2134

    Article  PubMed  CAS  Google Scholar 

  • Sangha N, Wu R, Kuick R et al (2008) Neurofibromin 1 (NF1) defects are common in human ovarian serous carcinomas and co-occur with TP53 mutations. Neoplasia 10(12):1362–1372

    Google Scholar 

  • Scheffzek K, Ahmadian MR (2005) GTPase activating proteins: structural and functional insights 18 years after discovery. Cell Mol Life Sci 62(24):3014–3038

    Article  PubMed  CAS  Google Scholar 

  • Scheffzek K, Lautwein A, Kabsch W et al (1996) Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras. Nature 384(6609):591–596

    Article  PubMed  CAS  Google Scholar 

  • Scheffzek K, Ahmadian MR, Kabsch W et al (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277(5324):333–338

    Article  PubMed  CAS  Google Scholar 

  • Scheffzek K, Ahmadian MR, Wiesmuller L et al (1998a) Structural analysis of the GAP-related domain from neurofibromin and its implications. EMBO J 17(15):4313–4327

    Article  PubMed  CAS  Google Scholar 

  • Scheffzek K, Ahmadian MR, Wittinghofer A (1998b) GTPase-activating proteins: helping hands to complement an active site. Trends Biochem Sci 23(7):257–262

    Article  PubMed  CAS  Google Scholar 

  • Sermon BA, Eccleston JF, Skinner RH et al (1996) Mechanism of inhibition by arachidonic acid of the catalytic activity of Ras GTPase-activating proteins. J Biol Chem 271(3):1566–1572

    Article  PubMed  CAS  Google Scholar 

  • Sermon BA, Lowe PN, Strom M et al (1998) The importance of two conserved arginine residues for catalysis by the ras GTPase-activating protein, neurofibromin. J Biol Chem 273(16):9480–9485

    Article  PubMed  CAS  Google Scholar 

  • Sha B, Phillips SE, Bankaitis VA et al (1998) Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol-transfer protein. Nature 391(6666):506–510

    Article  PubMed  CAS  Google Scholar 

  • Sherman L, Daston M, Ratner N (1998) Neurofibromin: distribution, cell biology and role in neurofibromatosis type 1. In: Upadhyaya M, Cooper DN (eds) Neurofibromatosis type 1—form genotype to phenotype. BIOS Scientific, Oxford, pp 113–131

    Google Scholar 

  • Sherman LS, Atit R, Rosenbaum T et al (2000) Single cell Ras-GTP analysis reveals altered Ras activity in a subpopulation of neurofibroma Schwann cells but not fibroblasts. J Biol Chem 275(39):30740–30745

    Article  PubMed  CAS  Google Scholar 

  • Shilyansky C, Lee YS, Silva AJ (2010) Molecular and cellular mechanisms of learning disabilities: a focus on NF1. Annu Rev Neurosci 33:221–243

    Article  PubMed  CAS  Google Scholar 

  • Sirokmany G, Szidonya L, Kaldi K et al (2005) Sec14 homology domain targets p50RhoGAP to endosomes and provides a link between Rab- and Rho GTPases. J Biol Chem 281(9):6096–6105

    Article  PubMed  CAS  Google Scholar 

  • Sondek J, Lambright DG, Noel JP et al (1994) GTPase mechanism of G proteins from the 1.7-A crystal structure of transducin alpha-GDP-AIF-4. Nature 372(6503):276–279

    Article  PubMed  CAS  Google Scholar 

  • Starinsky-Elbaz S, Faigenbloom L, Friedman E et al (2009) The pre-GAP-related domain of neurofibromin regulates cell migration through the LIM kinase/cofilin pathway. Mol Cell Neurosci 42(4):278–287

    Article  PubMed  CAS  Google Scholar 

  • Stocker A (2004) Molecular mechanisms of vitamin E transport. Ann NY Acad Sci 1031:44–59

    Article  PubMed  CAS  Google Scholar 

  • Tassabehji M, Strachan T, Sharland M et al (1993) Tandem duplication within a neurofibromatosis type 1 (NF1) gene exon in a family with features of Watson syndrome and Noonan syndrome. Am J Hum Genet 53(1):90–95

    PubMed  CAS  Google Scholar 

  • The I, Hannigan GE, Cowley GS et al (1997) Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276(5313):791–794

    Article  PubMed  CAS  Google Scholar 

  • Thomas L, Richards M, Mort M, Dunlop E, Cooper DN, Upadhayaya M. (2012) Assessment of the potential pathogenicity of missense mutations identified in the GTPase-activating protein (GAP)-related domain of the neurofibromatosis type-1 (NF1) gene. Hum. Mutat. 33:1687–1696

    Google Scholar 

  • Tong J, Hannan F, Zhu Y et al (2002) Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat Neurosci 5(2):95–96

    Article  PubMed  CAS  Google Scholar 

  • Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238(4826):542–545

    Article  PubMed  CAS  Google Scholar 

  • Trovó AB, Goloni-Bertollo EM, Mancini UM et al (2004) Mutational analysis of the GAP-related domain of the neurofibromatosis type 1 gene in Brazilian NF1 patients. Genet Mol Biol 27(3):326–330

    Article  Google Scholar 

  • Trovo-Marqui AB, Tajara EH (2006) Neurofibromin: a general outlook. Clin Genet 70(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Uchida T, Matozaki T, Suzuki T et al (1992) Expression of two types of neurofibromatosis type 1 gene transcripts in gastric cancers and comparison of GAP activities. Biochem Biophys Res Commun 187(1):332–339

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya M, Maynard J, Osborn M et al (1997a) Six novel mutations in the neurofibromatosis type 1 (NF1) gene. Hum Mutat 10(3):248–250

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya M, Osborn MJ, Maynard J et al (1997b) Mutational and functional analysis of the neurofibromatosis type 1 (NF1) gene. Hum Genet 99(1):88–92

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya M, Ruggieri M, Maynard J et al (1998) Gross deletions of the neurofibromatosis type 1 (NF1) gene are predominantly of maternal origin and commonly associated with a learning disability, dysmorphic features and developmental delay. Hum Genet 102(5):591–597

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya M, Spurlock G, Monem B et al (2008) Germline and somatic NF1 gene mutations in plexiform neurofibromas. Hum Mutat 29(8):E103–E111. doi:10.1002/humu.20793

    Article  PubMed  Google Scholar 

  • Upadhyaya M, Spurlock G, Kluwe L et al (2009) The spectrum of somatic and germline NF1 mutations in NF1 patients with spinal neurofibromas. Neurogenetics 10(3):251–263. doi:10.1007/s10048-009-0178-0

    Article  PubMed  CAS  Google Scholar 

  • Vandenbroucke I, Van Oostveldt P, Coene E et al (2004) Neurofibromin is actively transported to the nucleus. FEBS Lett 560(1–3):98–102

    Article  PubMed  CAS  Google Scholar 

  • Viskochil D, Buchberg AM, Xu G et al (1990) Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62(1):187–192

    Article  PubMed  CAS  Google Scholar 

  • Wallace MR, Marchuk DA, Andersen LB et al (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249(4965):181–186

    Article  PubMed  CAS  Google Scholar 

  • Wang HF, Shih YT, Chen CY et al (2011) Valosin-containing protein and neurofibromin interact to regulate dendritic spine density. J Clin Invest 121(12):4820–4837. doi:10.1172/JCI45677[doi]45677[pii]

    Article  PubMed  CAS  Google Scholar 

  • Weeber EJ, Sweatt JD (2002) Molecular neurobiology of human cognition. Neuron 33(6):845–848. doi:S0896627302006347[pii]

    Article  PubMed  CAS  Google Scholar 

  • Welti S, Fraterman S, D’Angelo I et al (2007) The sec14 homology module of neurofibromin binds cellular glycerophospholipids: mass spectrometry and structure of a lipid complex. J Mol Biol 366(2):551–562

    Article  PubMed  CAS  Google Scholar 

  • Welti S, Kuhn S, D’Angelo I et al (2011) Structural and biochemical consequences of NF1 associated nontruncating mutations in the Sec14-PH module of neurofibromin. Hum Mutat 32(2):191–197. doi:10.1002/humu.21405

    Article  PubMed  CAS  Google Scholar 

  • Wimmer K, Roca X, Beiglbock H et al (2007) Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5′ splice-site disruption. Hum Mutat 28(6):599–612. doi:10.1002/humu.20493

    Article  PubMed  CAS  Google Scholar 

  • Wittinghofer A (1997) Signaling mechanistics: aluminum fluoride for molecule of the year. Curr Biol 7(11):R682–R685

    Article  PubMed  CAS  Google Scholar 

  • Wittinghofer A, Scheffzek K, Ahmadian MR (1997) The interaction of Ras with GTPase-activating proteins. FEBS Lett 410(1):63–67

    Article  PubMed  CAS  Google Scholar 

  • Wu R, Lopez-Correa C, Rutkowski JL et al (1999) Germline mutations in NF1 patients with malignancies. Genes Chromosomes Cancer 26(4):376–380. doi:10.1002/(SICI)1098-2264(199912)26:4<376::AID-GCC13>3.0.CO;2-O [pii]

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Gutmann DH (1997) Mutations in the GAP-related domain impair the ability of neurofibromin to associate with microtubules. Brain Res 759(1):149–152

    Article  PubMed  CAS  Google Scholar 

  • Xu GF, Lin B, Tanaka K et al (1990a) The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63(4):835–841

    Article  PubMed  CAS  Google Scholar 

  • Xu GF, O’Connell P, Viskochil D et al (1990b) The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62(3):599–608

    Article  PubMed  CAS  Google Scholar 

  • Yunoue S, Tokuo H, Fukunaga K et al (2003) Neurofibromatosis type I tumor suppressor neurofibromin regulates neuronal differentiation via its GTPase-activating protein function toward Ras. J Biol Chem 278(29):26958–26969

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Charest PG, Firtel RA (2008) Spatiotemporal regulation of Ras activity provides directional sensing. Curr Biol 18(20):1587–1593. doi:10.1016/j.cub.2008.08.069[doi]S0960-9822(08)01244-X[pii]

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Parada LF (2001) Neurofibromin, a tumor suppressor in the nervous system. Exp Cell Res 264(1):19–28

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Parada LF (2002) The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2(8):616–626. doi:10.1038/nrc866[doi]nrc866[pii]

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Romero MI, Ghosh P et al (2001) Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev 15(7):859–876. doi:10.1101/gad.862101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for sharing views and discussions and apologize for not being able to give a comprehensive bibliography owing to space limitations. Work in our laboratory has been supported by grants from the US Department of Defense, the German Federal Ministry of Education and Research, the Baden-Württemberg Foundation (Germany) and the Peter and Traudl Engelhorn Stiftung (Penzberg, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Scheffzek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheffzek, K., Welti, S. (2012). Neurofibromin: Protein Domains and Functional Characteristics. In: Upadhyaya, M., Cooper, D. (eds) Neurofibromatosis Type 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32864-0_20

Download citation

Publish with us

Policies and ethics