Skip to main content

von Recklinghausen Disease: 130 Years

  • Chapter
  • First Online:
Neurofibromatosis Type 1

Abstract

This chapter is an introduction to the world of Recklinology, accounting for some of the historical persons and places, as well as selected clinical and basic research achievements. There is also a brief consideration of what the future portends, with particular focus on the NF1 gene being especially important in general metabolism as a “purine nucleotide balance” gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • (1988) NIH Consensus Development Conference Statement: Neurofibromatosis. Arch Neurol 45:575–578

    Google Scholar 

  • Acosta MT, Gioia GA, Silva AJ (2006) Neurofibromatosis type 1: new insights into neurocognitive issues. Curr Neurol Neurosci Rep 6:136–143

    Article  CAS  PubMed  Google Scholar 

  • Andea AA, Bouwman D, Wallis T, Visscher DW (2004) Correlation of tumor volume and surface area with lymph node status in patients with multifocal/multicentric breast carcinoma. Cancer 100:20–27

    Article  PubMed  Google Scholar 

  • Badache A, Muja N, De Vries GH (1998) Expression of Kit in neurofibromin-deficient human Schwann cells: role in Schwann cell hyperplasia associated with type 1 neurofibromatosis. Oncogene 17:795–800

    Article  CAS  PubMed  Google Scholar 

  • Bajenaru ML, Zhu Y, Hedrick NM, Donahoe J, Parada LF, Gutmann DH (2002) Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol Cell Biol 22:5100–5113

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Crouse NR, Emnett RJ, Gianino SM, Gutmann DH (2011) Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth and glioma formation in a TSC/Rheb-independent manner. Proc Natl Acad Sci USA 108:15996–16001

    Article  CAS  PubMed  Google Scholar 

  • Barker D, Wright E, Nguyen K, Cannon L, Fain P, Goldgar D, Bishop DT, Carey JBB, Kivlin J, Willard H, Waye JS, Greig G, Leinwand L, Nakamura Y, O’Connell P, Leppert M, Lalouel JM, White R, Skolnick M (1987) Gene for von Recklinghausen neurofibromatosis is in the pericentromeric region of chromosome 17. Science 236:1100–1102

    Article  CAS  PubMed  Google Scholar 

  • Barton B, North K (2007) The self-concept of children and adolescents with neurofibromatosis type 1. Child Care Health Dev 33:401–408

    Article  CAS  PubMed  Google Scholar 

  • Bland ML, Birnbaum MJ (2011) Cell biology. ADaPting to energetic stress. Science 332:1387–1388

    Article  CAS  PubMed  Google Scholar 

  • Borberg A (1951) Clinical and genetic investigations into tuberous sclerosis and Recklinghausen’s neurofibromatosis. Acta Psychiatr Neurol Scand 71:1–239

    CAS  Google Scholar 

  • Bottillo I, Torrente I, Lanari V, Pinna V, Giustini S, Divona L, De LA, Dallapiccola B (2010) Germline mosaicism in neurofibromatosis type 1 due to a paternally derived multi-exon deletion. Am J Med Genet A 152A:1467–1473

    CAS  PubMed  Google Scholar 

  • Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML, Reid SW, Buchberg AM, Jenkins NA, Parada LF, Copeland NG (1994) Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 8:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Brasfield RD, Das Gupta TK (1972) Von Recklinghausen’s disease: a clinicopathological study. Ann Surg 175:86–104

    Article  CAS  PubMed  Google Scholar 

  • Brems H, Chmara M, Sahbatou M, Denayer E, Taniguchi K, Kato R, Somers R, Messiaen L, De Schepper S, Fryns JP, Cools J, Marynen P, Thomas G, Yoshimura A, Legius E (2007) Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat Genet 39:1120–1126

    Article  CAS  PubMed  Google Scholar 

  • Brown JA, Emnett RJ, White CR, Yuede CM, Conyers SB, O’Malley KL, Wozniak DF, Gutmann DH (2010a) Reduced striatal dopamine underlies the attention system dysfunction in neurofibromatosis-1 mutant mice. Hum Mol Genet 19:4515–4528

    Article  CAS  PubMed  Google Scholar 

  • Brown JA, Gianino SM, Gutmann DH (2010b) Defective cAMP generation underlies the sensitivity of CNS neurons to neurofibromatosis-1 heterozygosity. J Neurosci 30:5579–5589

    Article  CAS  PubMed  Google Scholar 

  • Brown JA, Xu J, Diggs-Andrews KA, Wozniak DF, Mach RH, Gutmann DH (2011) PET imaging for attention deficit preclinical drug testing in neurofibromatosis-1 mice. Exp Neurol 232:333–338

    Article  CAS  PubMed  Google Scholar 

  • Brown JA, Diggs-Andrews KA, Gianino SM, Gutmann DH (2012) Neurofibromatosis-1 heterozygosity impairs CNS neuronal morphology in a cAMP/PKA/ROCK-dependent manner. Mol Cell Neurosci 49:13–22

    Article  CAS  PubMed  Google Scholar 

  • Campbell CE, Gibbs PD, Schmale MC (2001) Progression of infection and tumor development in damselfish. Mar Biotechnol 3(Suppl 1):S107–S104

    Article  CAS  PubMed  Google Scholar 

  • Canfield PJ (1967) A light microscopic study of bovine peripheral nerve sheath tumors. Vet Pathol 15:283–291

    Article  Google Scholar 

  • Canfield PJ, Doughty FR (1980) A study of virus-like particles present in bovine nerve sheath tumors. Aust Vet J 56:257–261

    Article  CAS  PubMed  Google Scholar 

  • Chai G, Liu N, Ma J, Li H, Oblinger JL, Prahalad AK, Gong M, Chang LS, Wallace M, Muir D, Guha A, Phipps RJ, Hock JM, Yu X (2010) MicroRNA-10b regulates tumorigenesis in neurofibromatosis type 1. Cancer Sci 101:1997–2004

    Article  CAS  PubMed  Google Scholar 

  • Coleman SL (1987) Neurofibromatosis and its relationship to school performance problems, learning disabilities, hyperactivity and intelligence. Master’s degree thesis, Department of Psychology, University of Houston, Houston, TX

    Google Scholar 

  • Crowe FW, Schull WJ, Neel JV (1956) A clinical, pathological, and genetic study of multiple neurofibromatosis. Charles C. Thomas, Springfield, IL

    Google Scholar 

  • Cutting LE, Koth CW, Burnette CP, Abrams MT, Kaufmann WE, Denckla MB (2000a) Relationship of cognitive functioning, whole brain volumes, and T2-weighted hyperintensities in neurofibromatosis-1. J Child Neurol 15:157–160

    Article  CAS  PubMed  Google Scholar 

  • Cutting LE, Koth CW, Denckla MB (2000b) How children with neurofibromatosis type 1 differ from “typical” learning disabled clinic attenders: nonverbal learning disabilities revisited. Dev Neuropsychol 17:29–47

    Article  CAS  PubMed  Google Scholar 

  • Das Gupta TK, Brasfield RD (1971) Von Recklinghausen’s disease. Cancer 21:174–183

    CAS  Google Scholar 

  • Dasgupta B, Dugan LL, Gutmann DH (2003) The neurofibromatosis 1 gene product neurofibromin regulates pituitary adenylate cyclase-activating polypeptide-mediated signaling in astrocytes. J Neurosci 23:8949–8954

    CAS  PubMed  Google Scholar 

  • Daston MM, Ratner N (1992) Neurofibromin, a predominantly neuronal GTPase activating protein in the adult, is ubiquitously expressed during development. Dev Dyn 195:216–226

    Article  CAS  PubMed  Google Scholar 

  • Daston MM, Scrable H, Nordlund M, Sturbaum AK, Nissen LM, Ratner N (1992) The protein product of the neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells, and oligodendrocytes. Neuron 8:415–428

    Article  CAS  PubMed  Google Scholar 

  • Dechant R, Peter M (2008) Nutrient signals driving cell growth. Curr Opin Cell Biol 20:678–687

    Article  CAS  PubMed  Google Scholar 

  • DeClue JE, Papageorge AG, Fletcher JA, Diehl SR, Ratner N, Vass WC, Lowy DR (1992) Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69:265–273

    Article  CAS  PubMed  Google Scholar 

  • Descheemaeker MJ, Ghesquiere P, Symons H, Fryns JP, Legius E (2005) Behavioral, academic and neuropsychological profile of normally gifted Neurofibromatosis type 1 children. J Intell Disabil Res 49:33–46

    Article  Google Scholar 

  • Dombi E, Solomon J, Gillespie AJ, Fox E, Balis FM, Patronas N, Korf BR, Babovic-Vuksanovic D, Packer RJ, Belasco J, Goldman S, Jakacki R, Kieran M, Steinberg SM, Widemann BC (2007) NF1 plexiform neurofibroma growth rate by volumetric MRI: relationship to age and body weight. Neurology 68:643–647

    Article  CAS  PubMed  Google Scholar 

  • Doughty FR (1977) Incidence of neurofibromas in cattle in abattoirs in New South Wales. Aust Vet J 53:280–281

    Article  CAS  PubMed  Google Scholar 

  • Fieber LA, Schmale MC (1994) Differences in a K current in Schwann cells from normal and neurofibromatosis-infected damselfish. Glia 11:64–72

    Google Scholar 

  • Galimov EM (2004) Phenomenon of life: between equilibrium and non-linearity. Orig Life Evol Biosph 34:599–613

    Article  CAS  PubMed  Google Scholar 

  • Galimov EM (2009) Concept of sustained ordering and an ATP-related mechanism of life’s origin. Int J Mol Sci 10:2019–2030

    Article  CAS  PubMed  Google Scholar 

  • Grand RJA, Lecane PS, Roberts S, Grant ML, Lane DP, Young LS, Dawson CW, Gallimore PH (1993) Overexpression of wild-type p53 and c-Myc in human fetal cells transformed with adenovirus early region 1. Virology 193:579–591

    Article  CAS  PubMed  Google Scholar 

  • Guo HF, Tong J, Hannan F, Luo L, Zhong Y (2000) A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 403:895–898

    Article  CAS  PubMed  Google Scholar 

  • Gutmann DH (2011) Molecular genetics of optic glioma—lessons learned from neurofibromatosis-1 genetically engineered mice. Expert Rev Ophthalmol 6:363–369

    Article  CAS  Google Scholar 

  • Gutmann DH, Andersen LB, Cole JL, Swaroop M, Collins FS (1993a) An alternatively-spliced mRNA in the carboxy terminus of the neurofibromatosis type 1 (NF1) gene is expressed in muscle. Hum Mol Genet 2:989–992

    Article  CAS  Google Scholar 

  • Gutmann DH, Tennekoon GI, Cole JL, Collins FS, Rutkowski JL (1993b) Modulation of the neurofibromatosis type 1 gene product, neurofibromin, during Schwann cell differentiation. J Neurosci Res 36:216–223

    Article  CAS  PubMed  Google Scholar 

  • Gutmann DH, Cole JL, Collins FS (1995a) Expression of the neurofibromatosis type 1 (NF1) gene during mouse embryonic development. Prog Brain Res 150:327–335

    Article  Google Scholar 

  • Gutmann DH, Geist RT, Rose K, Wright DE (1995b) Expression of two new protein isoforms of the neurofibromatosis type 1 gene product, neurofibromin, in muscle tissues. Dev Dyn 202:302–311

    Article  CAS  PubMed  Google Scholar 

  • Gutmann DH, Donahoe J, Brown T, James CD, Perry A (2000) Loss of neurofibromatosis 1 (NF1) gene expression in NF1-associated pilocytic astrocytomas. Neuropathol Appl Neurobiol 26:361–367

    Article  CAS  PubMed  Google Scholar 

  • Hannan F, Ho I, Tong JJ, Zhu Y, Nurnberg P, Zhong Y (2006) Effect of neurofibromatosis type I mutations on a novel pathway for adenylyl cyclase activation requiring neurofibromin and Ras. Hum Mol Genet 15:1087–1098

    Article  CAS  PubMed  Google Scholar 

  • Harkin JC, Reed RJ (1969) Tumors of the peripheral nervous system. In: Atlas of tumor pathology, Second series. Armed Forces Institute of Pathology, Washington, DC, pp 67–106

    Google Scholar 

  • Hattori S, Maekawa M, Nakamura S (1992) Identification of neurofibromatosis type I gene product as an insoluble GTPase-activating protein toward ras p21. Oncogene 7:481–485

    CAS  PubMed  Google Scholar 

  • Hegedus B, Dasgupta B, Shin JE, Emnett RJ, Hart-Mahon EK, Elghazi L, Bernal-Mizrachi E, Gutmann DH (2007) Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell 1:443–457

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    Article  CAS  PubMed  Google Scholar 

  • Ho IS, Hannan F, Guo HF, Hakker I, Zhong Y (2007) Distinct functional domains of neurofibromatosis type 1 regulate immediate versus long-term memory formation. J Neurosci 27:6852–6857

    Article  CAS  PubMed  Google Scholar 

  • Huson S, Hughes RAC (1994) The neurofibromatoses. Chapman & Hall, London

    Google Scholar 

  • Hyman SL, Gill DS, Shores EA, Steinberg A, Joy P, Gibikote SV, North KN (2003) Natural history of the cognitive deficits and their relationship to MRI T2-hyperintensities in NF1. Neurology 60:1139–1145

    Article  CAS  PubMed  Google Scholar 

  • Hyman SL, Shores A, North KN (2005) The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology 65:1037–1044

    Article  PubMed  Google Scholar 

  • Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA (1994) Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 7:353–361

    Article  CAS  PubMed  Google Scholar 

  • Jaremko JL, Macmahon PJ, Torriani M, Merker VL, Mautner VF, Plotkin SR, Bredella MA (2012) Whole-body MRI in neurofibromatosis: incidental findings and prevalence of scoliosis. Skeletal Radiol 41:917–923

    Google Scholar 

  • Johnson BA, Macwilliams B, Carey JC, Viskochil DH, D’Astous JL, Stevenson DA (2011) Lower extremity strength and hopping and jumping ground reaction forces in children with neurofibromatosis type 1. Hum Mov Sci 31:247–254

    Article  PubMed  Google Scholar 

  • Kaplan L, Foster R, Shen Y, Parry DM, McMaster ML, O’Leary MC, Gusella JF (2010) Monozygotic twins discordant for neurofibromatosis 1. Am J Med Genet A 152A:601–606

    Article  PubMed  Google Scholar 

  • Kim HA, DeClue JE, Ratner N (1997) cAMP-dependent protein kinase A is required for Schwann cell growth: interactions between the cAMP and neuregulin/tyrosine kinase pathways. J Neurosci Res 49:236–247

    Article  CAS  PubMed  Google Scholar 

  • Kluwe L, Siebert R, Gesk S, Friedrich RE, Tinschert S, Kehrer-Sawatzki H, Mautner V-F (2004) Screening 500 unselected neurofibromatosis 1 patients for deletions of the Nf1 gene. Hum Mutat 23:111–116

    Article  CAS  PubMed  Google Scholar 

  • Kossler N, Stricker S, Rodelsperger C, Robinson PN, Kim J, Dietrich C, Osswald M, Kuhnisch J, Stevenson DA, Braun T, Mundlos S, Kolanczyk M (2011) Neurofibromin (Nf1) is required for skeletal muscle development. Hum Mol Genet 20:2697–27709

    Article  CAS  PubMed  Google Scholar 

  • Krab LC, Aarsen FK, de Goede-Bolder A, Catsman-Berrevoets CE, Arts WF, Moll HA, Elgersma Y (2008a) Impact of neurofibromatosis type 1 on school performance. J Child Neurol 23:1002–1010

    PubMed  Google Scholar 

  • Krab LC, de Goede-Bolder A, Aarsen FK, Pluijm SM, Bouman MJ, van der Geest JN, Lequin M, Catsman CE, Arts WF, Kushner SA, Silva AJ, De Zeeuw CI, Moll HA, Elgersma Y (2008b) Effect of simvastatin on cognitive functioning in children with neurofibromatosis type 1: a randomized controlled trial. JAMA 300:287–294

    Article  CAS  PubMed  Google Scholar 

  • Krab LC, Goorden SM, Elgersma Y (2008c) Oncogenes on my mind: ERK and MTOR signaling in cognitive diseases. Trends Genet 24:498–510

    Article  CAS  PubMed  Google Scholar 

  • Krone W, Zorlein S, Mao P (1981) Cell culture studies on neurofibromatosis (von Recklinghausen). 1. Comparative growth experiments with fibroblasts at high and low concentrations of fetal calf serum. Hum Genet 58:188–193

    Article  CAS  PubMed  Google Scholar 

  • Lacson JM, Riccardi VM, Morizot DC (1988) Possible genetic etiology of damselfish neurofibromatosis (DNF): generic differentiation of bicolor damselfish (Pomacentrus partitus) populations. Neurofibromatosis 1:253–259

    CAS  PubMed  Google Scholar 

  • Lacson JM, Riccardi VM, Calhoun SW, Morizot DC (1989) Hurricanes and genetic drift in populations of bicolor damselfish. Mar Biol 103:445–451

    Article  Google Scholar 

  • Le LQ, Liu C, Shipman T, Chen Z, Suter U, Parada LF (2011) Susceptible stages in Schwann cells for NF1-associated plexiform neurofibroma development. Cancer Res 71:4686–4695

    Article  CAS  PubMed  Google Scholar 

  • Lebioda A, Zyromska A, Makarewicz R, Furtak J (2008) Tumour surface area as a prognostic factor in primary and recurrent glioblastoma irradiated with 192Ir implantation. Rep Pract Oncol Radiother 13:15–22

    Article  Google Scholar 

  • Lewis RA, Riccardi VM, Gerson LP, Whitford R, Axelson KA (1984) Von Recklinghausen neurofibromatosis: II. Incidence of optic nerve gliomata. Ophthalmology 91:929–935

    CAS  PubMed  Google Scholar 

  • Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, Cannon TD, Silva AJ (2005) The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol 15:1961–1967

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li Y, McKay RM, Riethmacher D, Parada LF (2012) Neurofibromin modulates adult hippocampal neurogenesis and behavioral effects of antidepressants. J Neurosci 32:3529–3539

    Article  CAS  PubMed  Google Scholar 

  • Listernick R, Ferner RE, Piersall L, Sharif S, Gutmann DH, Charrow J (2004) Late-onset optic pathway tumors in children with neurofibromatosis 1. Neurology 63:1944–1946

    Article  CAS  PubMed  Google Scholar 

  • Lyons JB, Staunton H (1992) Neurofibromatosis: why not Smith’s disease? J Hist Neurosci 1:65–73

    Article  CAS  PubMed  Google Scholar 

  • Ma TC, Mihm MJ, Bauer JA, Hoyt KR (2007) Bioenergetic and oxidative effects of free 3-nitrotyrosine in culture: selective vulnerability of dopaminergic neurons and increased sensitivity of non-dopaminergic neurons to dopamine oxidation. J Neurochem 103:131–144

    Article  CAS  PubMed  Google Scholar 

  • MacCollin M, Mohney T, Trofatter J, Wertelecki W, Ramesh V, Gusella J (1993) DNA diagnosis of neurofibromatosis 2: altered coding sequence of the merlin tumor suppressor in an extended pedigree. JAMA 270:2316–2320

    Article  CAS  PubMed  Google Scholar 

  • Maertens O, De Schepper S, Vandesompele J, Brems H, Heyns I, Janssens S, Speleman F, Legius E, Messiaen L (2007) Molecular dissection of isolated disease features in mosaic neurofibromatosis type 1. Am J Hum Genet 81:243–251

    Article  CAS  PubMed  Google Scholar 

  • Masson P (1970) Human tumors: histology, diagnosis, technique. Wayne State University Press, Detroit

    Google Scholar 

  • Mautner VF, Hartmann M, Kluwe L, Friedrich RE, Funsterer C (2006) MRI growth patterns of plexiform neurofibromas in patients with neurofibromatosis type 1. Neuroradiology 48:160–165

    Article  CAS  PubMed  Google Scholar 

  • Mautner VF, Asuagbor FA, Dombi E, Funsterer C, Kluwe L, Wenzel R, Widemann BC, Friedman JM (2008) Assessment of benign tumor burden by whole-body MRI in patients with neurofibromatosis 1. Neuro Oncol 10:593–598

    Article  PubMed  Google Scholar 

  • Mautner VF, Kluwe L, Friedrich RE, Roehl AC, Bammert S, Hogel J, Spori H, Cooper DN, Kehrer-Sawatzki H (2010) Clinical characterisation of 29 neurofibromatosis type-1 patients with molecularly ascertained 1.4 Mb type-1 NF1 deletions. J Med Genet 47:623–630

    Article  CAS  PubMed  Google Scholar 

  • Messiaen LM, Collens T, Mortier G, Beysen D, Vandenbroucke I, Van Roy N, Speleman F, De Paepe A (2000) Exhaustive mutation analysis of the Nf1 gene allows identification of 95 % of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 15:541–555

    Article  CAS  PubMed  Google Scholar 

  • Messiaen L et al (2009) Clinical and mutational spectrum of neurofibromatosis type 1-like syndrome. JAMA 302:2111–2118

    Article  CAS  PubMed  Google Scholar 

  • Messiaen L, Vogt J, Bengesser K, Fu C, Mikhail F, Serra E, Garcia-Linares C, Cooper DN, Lazaro C, Kehrer-Sawatzki H (2010) Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Hum Mutat 32(2):213–9

    Article  CAS  Google Scholar 

  • Mulvihill JJ (1988) Neurofibromatosis: history, nomenclature, and natural history. Neurofibromatosis 1:124–131

    CAS  PubMed  Google Scholar 

  • Mulvihill JJ, Sorensen SA, Nielsen A (1983) Four decades of neurofibromatosis (NF) Recklinghausen disease in Denmark: incidence of cancers. Am J Hum Genet 35:68A

    Google Scholar 

  • North K (1993) Neurofibromatosis type 1: review of the first 200 patients in an Australian clinic. J Child Neurol 8:395–402

    Article  CAS  PubMed  Google Scholar 

  • North K, Joy P, Yuille D, Cocks N, Mobbs E, Hutchins P, McHugh K, De Silva M (1994) Specific learning disability in children with neurofibromatosis type 1: significance of MRI abnormalities. Neurology 44:878–883

    Article  CAS  PubMed  Google Scholar 

  • North KN, Riccardi VM, Samango-Sprouse C, Ferner RE, Legius E, Ratner N, Moore BD III, Denckla MB (1997) Cognitive function and academic performance in neurofibromatosis 1: consensus statement from the NF1 Cognitive Disorders Task Force. Neurology 48:1121–1127

    Article  CAS  PubMed  Google Scholar 

  • North K, Hyman S, Barton B (2002) Cognitive deficits in neurofibromatosis 1. J Child Neurol 17:605–612

    Article  PubMed  Google Scholar 

  • Omi K, Kitano Y, Agawa H, Kadota K (1994) An immunohistochemical study of peripheral neuroblastoma, ganglioneuroblastoma, anaplastic ganglioglioma, schwannoma and neurofibroma in cattle. J Comp Pathol 111:1–14

    Article  CAS  PubMed  Google Scholar 

  • Ozonoff S (1999) Cognitive impairment in neurofibromatosis type 1. Am J Med Genet 89:45–52

    Article  CAS  PubMed  Google Scholar 

  • Park CS, Zhong L, Tang SJ (2009) Aberrant expression of synaptic plasticity-related genes in the NF1+/− mouse hippocampus. J Neurosci Res 87:3107–3119

    Article  CAS  PubMed  Google Scholar 

  • Pasmant E et al (2010) NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype. Hum Mutat 31:E1506–E1518

    Article  CAS  PubMed  Google Scholar 

  • Payne JM, Moharir MD, Webster R, North KN (2010) Brain structure and function in neurofibromatosis type 1: current concepts and future directions. J Neurol Neurosurg Psychiatry 81:304–309

    Article  PubMed  Google Scholar 

  • Peltonen J, Marttala T, Vihersaari T, Renvall S, Penttinen R (1981) Collagen synthesis in cells cultured from v. Recklinghausen neurofibromatosis. Acta Neuropathol 55:183–187

    Article  CAS  PubMed  Google Scholar 

  • Pericak-Vance MA, Yamaoka LH, Vance JM et al (1987) Genetic linkage studies on chromosome 17 RFLPs in von Recklinghausen neurofibromatosis (NF-1). Genomics 1:349–352

    Article  CAS  PubMed  Google Scholar 

  • Ratner N, Bunge RP, Glaser L (1986) Schwann cell proliferation in vitro: an overview. Ann NY Acad Sci 486:170–181

    Article  CAS  PubMed  Google Scholar 

  • Reynolds RM, Browning GG, Nawroz I, Campbell IW (2003) Von Recklinghausen’s neurofibromatosis: neurofibromatosis type 1. Lancet 361:1552–1554

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro MJ, Violante IR, Bernardino I, Ramos F, Saraiva J, Reviriego P, Upadhyaya M, Silva ED, Castelo-Branco M (2012) Abnormal achromatic and chromatic contrast sensitivity in neurofibromatosis type 1. Invest Ophthalmol Vis Sci 53:287–293

    Article  PubMed  Google Scholar 

  • Riccardi VM (1981a) Cutaneous manifestations of neurofibromatosis cellular interaction, pigmentation, and mast cells. Birth Defects 17:129–145

    CAS  PubMed  Google Scholar 

  • Riccardi VM (1981b) Von Recklinghausen neurofibromatosis. N Engl J Med 305:1617–1627

    Article  CAS  PubMed  Google Scholar 

  • Riccardi VM (1984) Neurofibromatosis as a model for investigating hereditary vs. environmental factors in learning disabilities. In: Fukuyama Y (ed) The developing brain and its disorders. University of Tokyo Press, Tokyo, pp 171–181

    Google Scholar 

  • Riccardi VM (1987) Mast cell stabilization to decrease neurofibroma growth: preliminary experience with ketotifen. Arch Dermatol 123:1011–1016

    Article  CAS  PubMed  Google Scholar 

  • Riccardi VM (1990a) Mast cell stabilization to minimize the symptoms of enlarging neurofibromas. Am J Hum Genet 47:A74

    Google Scholar 

  • Riccardi VM (1990b) The potential role of trauma and mast cells in the pathogenesis of neurofibromas. In: Ishibashi Y, Hori Y (eds) Tuberous sclerosis and neurofibromatosis: epidemiology, pathophysiology, biology and management. Elsevier, Amsterdam, pp 167–190

    Google Scholar 

  • Riccardi VM (1992) Neurofibromatosis: phenotype, natural history and pathogenesis. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Riccardi VM (1993) A controlled multiphase trial of ketotifen to minimize neurofibroma-associated pain and itching. Arch Dermatol 129:577–581

    Article  CAS  PubMed  Google Scholar 

  • Riccardi VM (2010) New approaches to von Recklinghausen disease: nonclonal origin of neurofibromas, S100 proteins and purine nucleotide balance. Jpn J Recklinghausen Dis 1:8–10

    Google Scholar 

  • Riccardi VM, Eichner JE (1986) Neurofibromatosis: phenotype, natural history, and pathogenesis. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Riccardi VM, Maragos VA (1980) The pathophysiology of neurofibromatosis. I. Resistance in vitro to 3-nitrotyrosine as an expression of the mutation. In Vitro 16:706–714

    Article  CAS  PubMed  Google Scholar 

  • Riccardi VM, Mulvihill JJ (1981) Advances in neurology, vol 29. Neurofibromatosis (von Recklinghausen disease): genetics, cell biology and biochemistry. Raven, New York

    Google Scholar 

  • Rodriguez FJ, Perry A, Gutmann DH, O’Neill BP, Leonard J, Bryant S, Giannini C (2008) Gliomas in neurofibromatosis type 1: a clinicopathologic study of 100 patients. J Neuropathol Exp Neurol 67:240–249

    Article  PubMed  Google Scholar 

  • Rouleau GA, Wertelecki W, Haines JL, Hobbs WJ, Trofatter JA, Seizinger BR, Martuza RL, Superneau DW, Conneally PM, Gusella JF (1987) Genetic linkage of bilateral acoustic neurofibromatosis to a DNA marker on chromosome 22. Nature 329:246–248

    Article  CAS  PubMed  Google Scholar 

  • Ruggieri M, Huson SM (2001) The clinical and diagnostic implications of mosaicism in the neurofibromatoses. Neurology 56:1433–1443

    Article  CAS  PubMed  Google Scholar 

  • Russell M, Bradshaw-Rouse J, Markwardt D, Heideman W (1993) Changes in gene expression in the Ras/adenylate cyclase system of Saccharomyces cerevisiae: correlation with cAMP levels and growth arrest. Mol Biol Cell 4:757–765

    CAS  PubMed  Google Scholar 

  • Said SM, Yeh TL, Greenwood RS, Whitt JK, Tupler LA, Krishnan KR (1996) MRI morphometric analysis and neuropsychological function in patients with neurofibromatosis. Neuroreport 7:1941–1944

    Article  CAS  PubMed  Google Scholar 

  • Sangster J, Shores EA, Watt S, North KN (2011) The cognitive profile of preschool-aged children with neurofibromatosis type 1. Child Neuropsychol 17:1–16

    Article  PubMed  Google Scholar 

  • Sartin EA, Doran SE, Riddell MG, Herrera GA, Tennyson GS, D’Andrea G, Whitley RD, Collins FS (1994) Characterization of naturally occurring cutaneous neurofibromas in Holstein cattle: a disorder resembling neurofibromatosis type 1 in man. Am J Pathol 145:1168–1174

    CAS  PubMed  Google Scholar 

  • Saygin O (1981) Nonenzymatic photophosphorylation with visible light: a possible mode of prebiotic ATP formation. Naturwissenschaften 68:617–619

    Article  CAS  Google Scholar 

  • Schmale MC, Hensley GT (1988) Transmissability of a neurofibromatosis-like disease in bicolor damselfish. Cancer Res 48:3828–3833

    CAS  PubMed  Google Scholar 

  • Schmale MC, Udey LR (1983) Epizootiology of malignant tumors of the bicolor damselfish (Eupomacentrus partitus) from reefs within the Key Largo and Looe Key National Marine Sanctuaries. University of Miami, Miami

    Google Scholar 

  • Schmale MC, Hensley GT, Udey LR (1983) Multiple schwannomas in the bicolor damselfish, Pomacentrus partitus: a possible model of von Recklinghausen neurofibromatosis. Am J Pathol 112:238–241

    CAS  PubMed  Google Scholar 

  • Schmale MC, Udey LR, Hensley GT (1986) Neurofibromatosis in the bicolor damselfish (Pomacentrus partitus) as a model for von Recklinghausen neurofibromatosis. Ann NY Acad Sci 486:386–402

    Article  CAS  PubMed  Google Scholar 

  • Schmale MC, Gibbs PD, Campbell CE (2002) A virus-like agent associated with neurofibromatosis in damselfish. Dis Aquat Organ 49:107–115

    Article  CAS  PubMed  Google Scholar 

  • Shahar KH, Solaiyappan M, Bluemke DA (2002) Quantitative differentiation of breast lesions based on three-dimensional morphology from magnetic resonance imaging. J Comput Assist Tomogr 26:1047–1053

    Article  PubMed  Google Scholar 

  • Shelly M, Lim BK, Cancedda L, Heilshorn SC, Gao H, Poo MM (2010) Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 327:547–552

    Article  CAS  PubMed  Google Scholar 

  • Shilyansky C, Lee YS, Silva AJ (2010) Molecular and cellular mechanisms of learning disabilities: a focus on NF1. Annu Rev Neurosci 33:221–243

    Article  CAS  PubMed  Google Scholar 

  • Silva AJ, Frankland PW, Marowitz Z, Friedman E, Laszlo GS, Cioffi D, Jacks T, Bourtchuladze R, Lazlo G (1997) A mouse model for the learning and memory deficits associated with neurofibromatosis type 1. Nat Genet 15:281–284

    Article  CAS  PubMed  Google Scholar 

  • Skolnick MH, Ponder BAJ, Seizinger B (1987) Linkage of NF-1 to 12 chromosome 17 markers: a summary of eight concurrent reports. Genomics 1:382–383

    Article  CAS  PubMed  Google Scholar 

  • Smith RW (1989) A treatise on the pathology, diagnosis and treatment of neuroma. Clin Orthop 245:3–9

    PubMed  Google Scholar 

  • Smullen S, Willcox T, Wetmore R, Zackai E (1994) Otologic manifestations of neurofibromatosis. Laryngoscope 104:663–665

    Article  CAS  PubMed  Google Scholar 

  • Solomon J, Warren K, Dombi E, Patronas N, Widemann B (2004) Automated detection and volume measurement of plexiform neurofibromas in neurofibromatosis 1 using magnetic resonance imaging. Comput Med Imaging Graph 28:257–265

    Article  PubMed  Google Scholar 

  • Spits C, De Rycke M, Van Ranst N, Joris H, Verpoest W, Lissens W, Devroey P, Van Steirteghem A, Liebaers I, Sermon K (2005) Preimplantation genetic diagnosis for neurofibromatosis type 1. Mol Hum Reprod 11:381–387

    Article  CAS  PubMed  Google Scholar 

  • Staser K, Yang FC, Clapp DW (2010) Mast cells and the neurofibroma microenvironment. Blood 116:157–164

    Article  CAS  PubMed  Google Scholar 

  • Staser K, Yang FC, Clapp DW (2011) Pathogenesis of plexiform neurofibroma: tumor-stromal/hematopoietic interactions in tumor progression. Annu Rev Pathol 7:469–495

    Article  PubMed  CAS  Google Scholar 

  • Stevenson DA, Moyer-Mileur LJ, Carey JC, Quick JL, Hoff CJ, Viskochil DH (2005) Case–control study of the muscular compartments and osseous strength in neurofibromatosis type 1 using peripheral quantitative computed tomography. J Musculoskelet Neuronal Interact 5:145–149

    CAS  PubMed  Google Scholar 

  • Stevenson DA, Zhou H, Ashrafi S, Messiaen LM, Carey JC, D’Astous JL, Santora SD, Viskochil DH (2006) Double inactivation of NF1 in tibial pseudoarthrosis. Am J Hum Genet 79:143–148

    Article  CAS  PubMed  Google Scholar 

  • Stevenson DA, Schwarz EL, Viskochil DH, Moyer-Mileur LJ, Murray M, Firth SD, D’Astous JL, Carey JC, Pasquali M (2008) Evidence of increased bone resorption in neurofibromatosis type 1 using urinary pyridinium crosslink analysis. Pediatr Res 63:697–701

    Article  PubMed  Google Scholar 

  • The I, Hannigan GE, Cowley GS, Reginald S, Zhong Y, Gusella JF, Hariharan IK, Bernards A (1997) Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276:791–794

    Article  CAS  PubMed  Google Scholar 

  • Tong J, Hannan F, Zhu Y, Bernards A, Zhong Y (2002) Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat Neurosci 5:95–96

    Article  CAS  PubMed  Google Scholar 

  • Tong JJ, Schriner SE, McCleary D, Day BJ, Wallace DC (2007) Life extension through neurofibromin mitochondrial regulation and antioxidant therapy for neurofibromatosis-1 in Drosophila melanogaster. Nat Genet 39:476–485

    Article  CAS  PubMed  Google Scholar 

  • Tucker T, Riccardi VM, Sutcliffe M, Vielkind J, Wechsler J, Wolkenstein P, Friedman JM (2011) Mast cell densities and distributions distinguish two types of neurofibromas in patients with neurofibromatosis 1. J Histochem Cytochem 59:584–590

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya M et al (2007) An absence of cutaneous neurofibromas associated with a 3-bp in-frame deletion in exon 17 of the Nf1 gene (c.2970-2972 delAAT): evidence of a clinically significant NF1 genotype-phenotype correlation. Am J Hum Genet 80:140–151

    Article  CAS  PubMed  Google Scholar 

  • van Engelen SJ, Krab LC, Moll HA, de Goede-Bolder A, Pluijm SM, Catsman-Berrevoets CE, Elgersma Y, Lequin MH (2008) Quantitative differentiation between healthy and disordered brain matter in patients with neurofibromatosis type I using diffusion tensor imaging. Am J Neuroradiol 29:816–822

    Article  PubMed  Google Scholar 

  • Van Teinen P, Rich DC, Summers KM, Ledbetter DH (1987) Regional mapping panel for chromosome 17: application to neurofibromatosis type 1. Genomics 1:374–381

    Article  Google Scholar 

  • Verlinsky Y, Rechitsky S, Verlinsky O, Chistokhina A, Sharapova T, Masciangelo C, Levy M, Kaplan B, Lederman J, Kuliev A (2002) Preimplantation diagnosis for neurofibromatosis. Reprod Biomed Online 4:218–222

    Article  PubMed  Google Scholar 

  • Videtic GM, Gaspar LE, Zamorano L, Stitt LW, Fontanesi J, Levin KJ (2001) Implant volume as a prognostic variable in brachytherapy decision-making for malignant gliomas stratified by the RTOG recursive partitioning analysis. Int J Radiat Oncol Biol Phys 51:963–968

    Article  CAS  PubMed  Google Scholar 

  • Virchow R (1857) Uber eniem Fall von vielfachen Neuromen (Faser-Kern-geschwultsen) mit ausgezeichneter localer Recidivfahikeit. Virchows Arch [A] 12:144

    Google Scholar 

  • Viskochil D (2003) It takes two to tango: mast cell and Schwann cell interactions in neurofibromas. J Clin Invest 112:1791–1793

    CAS  PubMed  Google Scholar 

  • Viskochil D, Buchberg AM, Xu G, Cawthon RM, Stevens J, Wolff RK, Culver M, Carey JC, Copeland NG, Jenkins NA, White R, O’Connell P (1990) Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62:187–192

    Article  CAS  PubMed  Google Scholar 

  • Vogt J, Kohlhase J, Morlot S, Kluwe L, Mautner VF, Cooper DN, Kehrer-Sawatzki H (2011a) Monozygotic twins discordant for neurofibromatosis type 1 due to a postzygotic NF1 gene mutation. Hum Mutat 32:E2134–E2147

    Article  CAS  PubMed  Google Scholar 

  • Vogt J, Nguyen R, Kluwe L, Roehl AC, Mussotter T, Cooper DN, Mautner VF, Kehrer-Sawatzki H, Schuhmann M (2011b) Delineation of the clinical phenotype associated with non-mosaic type-2 NF1 deletions: two case reports. J Med Case Rep 5:577

    Article  PubMed  Google Scholar 

  • Von Recklinghausen F (1882) Über die multiplen Fibrome der Haut und ihre Beziehung zu multiplen Neuromen. August Hirschwald, Berlin

    Google Scholar 

  • Wallace DC, Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10:12–31

    Article  CAS  PubMed  Google Scholar 

  • Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, Fountain JW, Bereton A, Nicholson J, Mitchell AL, Brownstein BH, Collins FS (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF-1 patients. Science 249:181–186

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Chiamvimonvat N, Vazquez AE, Akunuru S, Ratner N, Yamoah EN (2002) Gene-targeted deletion of neurofibromin enhances the expression of a transient outward K + current in Schwann cells: a protein kinase A-mediated mechanism. J Neurosci 22:9194–9202

    CAS  PubMed  Google Scholar 

  • Zickler AM, Hampp S, Messiaen L, Bengesser K, Mussotter T, Roehl AC, Wimmer K, Mautner VF, Kluwe L, Upadhyaya M, Pasmant E, Chuzhanova N, Kestler HA, Hogel J, Legius E, Claes K, Cooper DN, Kehrer-Sawatzki H (2011) Characterization of the nonallelic homologous recombination hotspot PRS3 associated with type-3 NF1 deletions. Hum Mutat 33(2):372–83

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent M. Riccardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Riccardi, V.M. (2012). von Recklinghausen Disease: 130 Years. In: Upadhyaya, M., Cooper, D. (eds) Neurofibromatosis Type 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32864-0_1

Download citation

Publish with us

Policies and ethics