Expanding Opinion Attribute Lexicons

  • Aleksander Wawer
  • Konrad Gołuchowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7499)


The article focuses on acquiring new vocabulary used to express opinion attributes. We apply two automated expansion techniques to a manually annotated corpus of attribute-level opinions. The first method extracts opinion attribute words using patterns. It has been augmented by the second, wordnet and similarity-based expansion procedure. We examine the types of errors and shortcomings of both methods and end up proposing two hybrid, machine learning approaches that utilise all the available information: rules, lexical and distributional. One of them proves highly successful.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brill, E.: A simple rule-based part of speech tagger. In: Proceedings of the Third Conference on Applied Natural Language Processing, pp. 152–155 (1992)Google Scholar
  2. 2.
    Hu, M., Liu, B.: Mining opinion features in customer reviews. In: Proceedings of the 19th National Conference on Artifical Intelligenc, AAAI 2004, pp. 755–760. AAAI Press (2004)Google Scholar
  3. 3.
    Kobayashi, N., Inui, K., Matsumoto, Y.: Extracting aspect-evaluation and aspect-of relations in opinion mining. In: Proceedings of EMNLP (2007).Google Scholar
  4. 4.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using machine learning techniques. In: Proceedings of EMNLP (2002)Google Scholar
  5. 5.
    Piasecki, M., Broda, B.: Semantic Similarity Measure of Polish Nouns Based on Linguistic Features. In: Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 381–390. Springer, Heidelberg (2007), CrossRefGoogle Scholar
  6. 6.
    Piasecki, M., Szpakowicz, S., Broda, B.: A Wordnet from the Ground Up. Oficyna Wydawnicza Politechniki Wroclawskiej (2009)Google Scholar
  7. 7.
    Popescu, A.M., Etzioni, O.: Extracting product features and opinions from reviews. In: Proceedings of EMNLP (2005)Google Scholar
  8. 8.
    Przepiorkowski, A., Buczynski, A.: Spade: Shallow parsing and disambiguation engine. In: Proceedings of the 3rd Language and Technology Conference, Poznan (2007)Google Scholar
  9. 9.
    Qiu, G., Liu, B., Bu, J., Chen, C.: Expanding domain sentiment lexicon through double propagation. In: Proceedings of IJCAI (2009)Google Scholar
  10. 10.
    Turney, P., Littman, M.: Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems 21, 315–346 (2003)CrossRefGoogle Scholar
  11. 11.
    Wang, B., Wang, H.: Bootstrapping both product features and opinion words from chinese customer reviews with cross-inducing. In: Proceedings of IJCNLP 2008 (2008)Google Scholar
  12. 12.
    Wawer, A., Sakwerda, K.: How Opinion Annotations and Ontologies Become Objective? In: Bouvry, P., Kłopotek, M.A., Leprévost, F., Marciniak, M., Mykowiecka, A., Rybiński, H. (eds.) SIIS 2011. LNCS, vol. 7053, pp. 391–400. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Zhuang, L., Feng, J., Xiao-yan, Z.: Movie review mining and summarization. In: Proceedings of CIKM (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aleksander Wawer
    • 1
  • Konrad Gołuchowski
    • 1
  1. 1.Institute of Computer SciencePolish Academy of ScienceWarszawaPoland

Personalised recommendations