Advertisement

A Comparative Study of the Impact of Statistical and Semantic Features in the Framework of Extractive Text Summarization

  • Tatiana Vodolazova
  • Elena Lloret
  • Rafael Muñoz
  • Manuel Palomar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7499)

Abstract

This paper evaluates the impact of a set of statistical and semantic features as applied to the task of extractive summary generation for English. This set includes word frequency, inverse sentence frequency, inverse term frequency, corpus-tailored stopwords, word senses, resolved anaphora and textual entailment. The obtained results show that not all of the selected features equally benefit the performance. The term frequency combined with stopwords filtering is a highly competitive baseline that nevertheless can be topped when semantic information is included. However, in the selected experiment environment the recall values improved less than expected and we are interested in further investigating the reasons.

Keywords

Semantic Feature Term Frequency Word Sense Disambiguation Text Summarization Anaphora Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blake, C.: A Comparison of Document, Sentence, and Term Event Spaces. In: ACL-44 Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, pp. 601–608. ACL, Stroudsburg (2006)Google Scholar
  2. 2.
    Chuang, W.T., Yang, J.: Text Summarization by Sentence Segment Extraction Using Machine Learning Algorithms. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 454–457. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Fujii, Y., Kitaoka, N., Nakagawa, S.: Automatic Extraction of Cue Phrases for Important Sentences in Lecture Speech and Automatic Lecture Speech Summarization. In: INTERSPEECH, pp. 2801–2804 (2007)Google Scholar
  4. 4.
    Ferrández, O., Micol, M., Muñoz, R., Palomar, M.: A perspective-based approach for solving textual entailment recognition. In: ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 66–71 (2007)Google Scholar
  5. 5.
    Harabagiu, S., Lacatusu, F.: Topic Themes for Multi-document Summarization. In: 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 202–209 (2005)Google Scholar
  6. 6.
    Harabagiu, S., Hickl, A., Lacatusu, F.: Satisfying Information Needs with Multi-document Summaries. Information Processing & Management 43(6), 1619–1642 (2007)CrossRefGoogle Scholar
  7. 7.
    Lin, C.Y.: ROUGE: A Package for Automatic Evaluation of Summaries. In: ACL Text Summarization Workshop, pp. 74–81 (2004)Google Scholar
  8. 8.
    Lloret, E., Ferrández, O., Muñoz, R., Palomar, M.: A Text Summarization Approach Under the Influence of Textual Entailment. In: 5th International Workshop on NLPCS, pp. 22–31 (2008)Google Scholar
  9. 9.
    Luhn, H.P.: The Automatic Creation of Literature Abstracts. IBM Journal of Research and Development 2(2), 157–165 (1958)CrossRefGoogle Scholar
  10. 10.
    Nenkova, A., Vanderwende, L., McKeown, K.: A Compositional Context Sensitive Multi-doscument Summarizer: Exploring the Factors That Influence Summarization. In: 29th SIGIR, pp. 573–580. ACM, New York (2006)Google Scholar
  11. 11.
    Plaza, L., Díaz, A.: Using Semantic Graphs and Word Sense Disambiguation. Techniques to Improve Text Summarization. Procesamiento del Lenguaje Natural 47, 97–105 (2011)Google Scholar
  12. 12.
    Saggion, H.: A Robust and Adaptable Summarization Tool. Traitement Automatique des Languages 49(2), 103–125 (2008)Google Scholar
  13. 13.
    Steinberger, J., Poesio, M., Kabadjov, M.A., Ježek, K.: Two Uses of Anaphora Resolution in Summarization. Information Processing and Management 43(6), 1663–1680 (2007)CrossRefGoogle Scholar
  14. 14.
    Tatar, D., Tamaianu-Morita, E., Mihis, A., Lupsa, D.: Summarization by Logic Segmentation and Text Entailment. In: 33rd CICLing, pp. 15–26 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tatiana Vodolazova
    • 1
  • Elena Lloret
    • 1
  • Rafael Muñoz
    • 1
  • Manuel Palomar
    • 1
  1. 1.Dept. Lenguajes y Sistemas InformáticosUniversidad de AlicanteAlicanteSpain

Personalised recommendations