Advertisement

Using a Double Clustering Approach to Build Extractive Multi-document Summaries

  • Sara Botelho Silveira
  • António Branco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7499)

Abstract

This paper presents a method for extractive multi-document summarization that explores a two-phase clustering approach. First, sentences are clustered by similarity, and one sentence per cluster is selected, to reduce redundancy. Then, in order to group them according to topics, those sentences are clustered considering the collection of keywords that represent the topics in the set of texts. Evaluation reveals that the approach pursued produces highly informative summaries, containing many relevant data and no repeated information.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Radev, D.R., Jing, H., Budzikowska, M.: Centroid-based summarization of multiple documents: sentence extraction, utility-based evaluation, and user studies. In: Proceedings of the 2000 NAACL-ANLP Workshop on Automatic Summarization, NAACL-ANLP-AutoSum 2000, pp. 21–30. ACL (2000)Google Scholar
  2. 2.
    McKeown, K.R., Hatzivassiloglou, V., Barzilay, R., Schiffman, B., Evans, D., Teufel, S.: Columbia multi-document summarization: Approach and evaluation. In: Proceedings of the Document Understanding Conference, DUC 2001 (2001)Google Scholar
  3. 3.
    Lin, C.Y., Hovy, E.: From single to multi-document summarization: A prototype system and its evaluation. In: Proceedings of the ACL, pp. 457–464. MIT Press (2002)Google Scholar
  4. 4.
    Pardo, T.A.S., Rino, L.H.M., das Graças Volpe Nunes, M.: GistSumm: A Summarization Tool Based on a New Extractive Method. In: Mamede, N.J., Baptista, J., Trancoso, I., Nunes, M.d.G.V. (eds.) PROPOR 2003. LNCS, vol. 2721, pp. 210–218. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Jorge, M.L.C., Agostini, V., Pardo, T.A.S.: Multi-document summarization using complex and rich features, pp. 1–12 (July 2011)Google Scholar
  6. 6.
    Branco, A., Silva, J.: A suite of shallow processing tools for portuguese: Lx-suite. In: Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2006 (2006)Google Scholar
  7. 7.
    Silva, J., Branco, A., Castro, S., Reis, R.: Out-of-the-box robust parsing of Portuguese. In: PROPOR 2010: Proceedings of the 9th Encontro para o Processamento Computacional da Língua Portuguesa Escrita e Falada, pp. 75–85 (2010)Google Scholar
  8. 8.
    Jaccard, P.: Nouvelles recherches sur la distribution florale. Bulletin de la Sociète Vaudense des Sciences Naturelles 44, 223–270 (1908)Google Scholar
  9. 9.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press (1967)Google Scholar
  10. 10.
    Silveira, S.B., Branco, A.: Enhancing multi-document summaries with sentence simplification. In: ICAI 2012: International Conference on Artificial Intelligence (2012)Google Scholar
  11. 11.
    Aleixo, P., Pardo, T.A.S.: CSTNews: Um córpus de textos jornalísticos anotados segundo a teoria discursiva multidocumento CST (cross-document structure theory). Technical report, Universidade de São Paulo (2008)Google Scholar
  12. 12.
    Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. In: Text Summarization Branches Out: Proceedings of the ACL 2004 Workshop, Barcelona, Spain, pp. 74–81 (July 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sara Botelho Silveira
    • 1
  • António Branco
    • 1
  1. 1.Edifício C6, Departamento de Informática, Faculdade de CiênciasUniversity of LisbonLisboaPortugal

Personalised recommendations