Advertisement

Joint Part-of-Speech Tagging and Named Entity Recognition Using Factor Graphs

  • György Móra
  • Veronika Vincze
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7499)

Abstract

We present a machine learning-based method for jointly labeling POS tags and named entities. This joint labeling is performed by utilizing factor graphs. The variables of part of speech and named entity labels are connected by factors so the tagger jointly determines the best labeling for the two labeling tasks. Using the feature sets of SZTENER and the POS-tagger magyarlanc, we built a model that is able to outperform both of the original taggers.

Keywords

POS tagging named entity recognition joint labeling factor graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kripke, S.: Naming and Necessity. Basil Blackwell, Oxford (1980)Google Scholar
  2. 2.
    McCallum, A.K.: Mallet: A machine learning for language toolkit (2002), http://mallet.cs.umass.edu
  3. 3.
    McCallum, A., Schultz, K., Singh, S.: FACTORIE: Probabilistic Programming via Imperatively Defined Factor Graphs. In: Advances in Neural Information Processing Systems, vol. 22, pp. 1–9 (2009)Google Scholar
  4. 4.
    Mayfield, J., Mcnamee, P., Piatko, C.: Named entity recognition using hundreds of thousands of features. In: Proceedings of CoNLL 2003, pp. 184–187 (2003)Google Scholar
  5. 5.
    Chieu, H.L., Ng, H.T.: Named entity recognition with a maximum entropy approach. In: Daelemans, W., Osborne, M. (eds.) Proceedings of CoNLL 2003, Edmonton, Canada, pp. 160–163 (2003)Google Scholar
  6. 6.
    Florian, R., Ittycheriah, A., Jing, H., Zhang, T.: Named entity recognition through classifier combination. In: Daelemans, W., Osborne, M. (eds.) Proceedings of CoNLL 2003, Edmonton, Canada, pp. 168–171 (2003)Google Scholar
  7. 7.
    Miller, S., Crystal, M., Fox, H., Ramshaw, L., Schwartz, R., Stone, R., Weischedel, R., Group, T.A.: Algorithms That Learn To Extract Information BBN: Description of The Sift System as Used For MUC-7. In: Proceedings of MUC-7 (1998)Google Scholar
  8. 8.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 282–289. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  9. 9.
    Tjong Kim Sang, E.F.: Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity Recognition. In: Proceedings of CoNLL 2002, Taipei, Taiwan, pp. 155–158 (2002)Google Scholar
  10. 10.
    Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition. In: Daelemans, W., Osborne, M. (eds.) Proceedings of CoNLL 2003, Edmonton, Canada, pp. 142–147 (2003)Google Scholar
  11. 11.
    Szarvas, Gy., Farkas, R., Kocsor, A.: A Multilingual Named Entity Recognition System Using Boosting and C4.5 Decision Tree Learning Algorithms. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.) DS 2006. LNCS (LNAI), vol. 4265, pp. 267–278. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Halácsy, P., Kornai, A., Oravecz, C.: HunPos: an open source trigram tagger. In: Proceedings of the ACL 2007 Demo and Poster Sessions, pp. 209–212. Association for Computational Linguistics, Stroudsburg (2007)CrossRefGoogle Scholar
  13. 13.
    Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of NAACL 2003, pp. 173–180. Association for Computational Linguistics, Stroudsburg (2003)CrossRefGoogle Scholar
  14. 14.
    Csendes, D., Csirik, J., Gyimóthy, T.: The Szeged Corpus. A POS Tagged and Syntactically Annotated Hungarian Natural Language Corpus. In: Hansen-Schirra, S., Oepen, S., Uszkoreit, H. (eds.) COLING 2004 5th International Workshop on Linguistically Interpreted Corpora, Geneva, Switzerland, pp. 19–22 (2004)Google Scholar
  15. 15.
    Szarvas, Gy., Farkas, R., Felföldi, L., Kocsor, A., Csirik, J.: A highly accurate Named Entity corpus for Hungarian. In: Proceedings of LREC 2006 (2006)Google Scholar
  16. 16.
    Zsibrita, J., Vincze, V., Farkas, R.: Ismeretlen kifejezések és a szófaji egyértelműsítés. In: Tanács, A., Vincze, V. (eds.) MSzNy 2010 – VII. Magyar Számítógépes Nyelvészeti Konferencia, Szeged, Hungary, University of Szeged, pp. 275–283 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • György Móra
    • 1
  • Veronika Vincze
    • 2
    • 3
  1. 1.Department of InformaticsUniversity of SzegedSzegedHungary
  2. 2.MTA-SZTE Research Group on Artificial IntelligenceSzegedHungary
  3. 3.Linguistische DatenverarbeitungUniversität TrierTrierGermany

Personalised recommendations