Trace Semantics via Determinization

  • Bart Jacobs
  • Alexandra Silva
  • Ana Sokolova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7399)


This paper takes a fresh look at the topic of trace semantics in the theory of coalgebras. The first development of coalgebraic trace semantics used final coalgebras in Kleisli categories, stemming from an initial algebra in the underlying category. This approach requires some non-trivial assumptions, like dcpo enrichment, which do not always hold, even in cases where one can reasonably speak of traces (like for weighted automata). More recently, it has been noticed that trace semantics can also arise by first performing a determinization construction. In this paper, we develop a systematic approach, in which the two approaches correspond to different orders of composing a functor and a monad, and accordingly, to different distributive laws. The relevant final coalgebra that gives rise to trace semantics does not live in a Kleisli category, but more generally, in a category of Eilenberg-Moore algebras. In order to exploit its finality, we identify an extension operation, that changes the state space of a coalgebra into a free algebra, which abstractly captures determinization of automata. Notably, we show that the two different views on trace semantics are equivalent, in the examples where both approaches are applicable.


Natural Transformation Free Algebra Forgetful Functor Deterministic Automaton Extension Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Balan, A., Kurz, A.: On coalgebras over algebras. Theor. Comp. Sci. 412(38), 4989–5005 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Berlin (1985) (revized and corrected version),
  3. 3.
    Bonsangue, M.M., Milius, S., Silva, A.: Sound and complete axiomatizations of coalgebraic language equivalence, (2011)Google Scholar
  4. 4.
    Borceux, F.: Handbook of Categorical Algebra. Encyclopedia of Mathematics, vol. 50, 51 and 52. Cambridge Univ. Press (1994)Google Scholar
  5. 5.
    Boreale, M.: Weighted Bisimulation in Linear Algebraic Form. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 163–177. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Castro, P., Panangaden, P., Precup, D.: Equivalence relations in fully and partially observable Markov decision processes. In: Proc. IJCAI 2009, pp. 1653–1658 (2009)Google Scholar
  7. 7.
    Cîrstea, C.: Maximal traces and path-based coalgebraic temporal logics. Theor. Comput. Sci. 412(38), 5025–5042 (2011)zbMATHCrossRefGoogle Scholar
  8. 8.
    Coumans, D., Jacobs, B.: Scalars, monads and categories. In: Heunen, C., Sadrzadeh, M. (eds.) Compositional Methods in Physics and Linguistics, Oxford Univ. Press (2012)Google Scholar
  9. 9.
    Crafa, S., Ranzato, F.: A Spectrum of Behavioral Relations over LTSs on Probability Distributions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011 – Concurrency Theory. LNCS, vol. 6901, pp. 124–139. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C.: Characterising testing preorders for finite probabilistic processes. Logical Methods in Computer Science 4(4) (2008)Google Scholar
  11. 11.
    Doberkat, E.: Eilenberg-moore algebras for stochastic relations. Information and Computation 204(12), 1756–1781 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace theory via coinduction. Logical Methods in Computer Science 3(4:11) (2007)Google Scholar
  13. 13.
    Hermanns, H., Parma, A., Segala, R., Wachter, B., Zhang, L.: Probabilistic logical characterization. Information and Computation 209(2), 154–172 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Wesley (2006)Google Scholar
  15. 15.
    Jacobs, B.: Coalgebraic Walks, in Quantum and Turing Computation. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 12–26. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Johnstone, P.T.: Adjoint lifting theorems for categories of algebras. Bull. London Math. Soc. 7, 294–297 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kissig, C., Kurz, A.: Generic trace logics (2011),
  18. 18.
    Manes, E.G.: Algebraic Theories. Springer, Berlin (1974)Google Scholar
  19. 19.
    Mac Lane, S.: Categories for the Working Mathematician. Springer, Berlin (1971)zbMATHGoogle Scholar
  20. 20.
    Moggi, E.: Notions of computation and monads. Information and Computation 93(1), 55–92 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Parma, A., Segala, R.: Logical Characterizations of Bisimulations for Discrete Probabilistic Systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 287–301. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Pavlovic, D., Mislove, M.W., Worrell, J.B.: Testing Semantics: Connecting Processes and Process Logics. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 308–322. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Segala, R., Lynch, N.A.: Probabilistic Simulations for Probabilistic Processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  24. 24.
    Silva, A.: Kleene coalgebra. PhD thesis, Radboud University Nijmegen (2010)Google Scholar
  25. 25.
    Silva, A., Bonchi, F., Bonsangue, M., Rutten, J.: Generalizing the powerset construction, coalgebraically. In: Proc. FSTTCS 2010. LIPIcs, vol. 8, pp. 272–283 (2010)Google Scholar
  26. 26.
    Silva, A., Sokolova, A.: Sound and complete axiomatization of trace semantics for probabilistic systems. In: Proc. MFPS 2011. ENTCS, vol. 276, pp. 291–311 (2011)Google Scholar
  27. 27.
    Varacca, D., Winskel, G.: Distributing probability over non-determinism. Mathematical Structures in Computer Science 16(1), 87–113 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Bart Jacobs
    • 1
  • Alexandra Silva
    • 1
  • Ana Sokolova
    • 2
  1. 1.Institute for Computing and Information SciencesRadboud UniversityNijmegenThe Netherlands
  2. 2.Department of Computer SciencesUniversity of SalzburgAustria

Personalised recommendations