Advertisement

Stream Automata Are Coalgebras

  • Vincenzo Ciancia
  • Yde Venema
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7399)

Abstract

Stream automata (also called ω-automata) and ω-regular languages are of paramount importance in Computer Science and Logic. A coalgebraic treatment of these structures has not been given yet. We study a simple two-sorted setting where deterministic Muller automata can be cast as coalgebras, so that coalgebraic bisimilarity coincides with language equivalence. From this characterisation, we derive concise and natural decision procedures for complementation, union, intersection, and equivalence check.

Keywords

Boolean Operation Equivalence Check Regular Language Empty Word Unique Morphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bartels, F., Sokolova, A., de Vink, E.P.: A hierarchy of probabilistic system types. Theoretical Computer Science 327(1-2), 3–22 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: LICS, pp. 355–364. IEEE Computer Society (2011)Google Scholar
  3. 3.
    Bonchi, F., Bonsangue, M., Rutten, J., Silva, A.: Deriving Syntax and Axioms for Quantitative Regular Behaviours. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 146–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Calbrix, H., Nivat, M., Podelski, A.: Ultimately Periodic Words of Rational ω-Languages. In: Main, M.G., Melton, A.C., Mislove, M.W., Schmidt, D., Brookes, S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  5. 5.
    Ciancia, V., Tuosto, E.: A novel class of automata for languages on infinite alphabets. Tech. rep., University of Leicester (2009)Google Scholar
  6. 6.
    Worrell, J.: Terminal sequences for accessible endofunctors. In: CMCS. Electronic Notes in Theoretical Computer Science, vol. 19, pp. 24–38. Elsevier (1999)Google Scholar
  7. 7.
    Pin, J.E., Perrin, D.: Infinite Words: Automata, Semigroups, Logic and Games. Elsevier (2004)Google Scholar
  8. 8.
    Rutten, J.: Automata and Coinduction (An Exercise in Coalgebra). In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249(1), 3–80 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Venema, Y.: Automata and fixed point logic: A coalgebraic perspective. Information and Computation 204(4), 637–678 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Vincenzo Ciancia
    • 1
  • Yde Venema
    • 1
  1. 1.Institute of Logic, Language and ComputationUniversity of AmsterdamThe Netherlands

Personalised recommendations