Advertisement

Relational Presheaves as Labelled Transition Systems

  • Paweł Sobociński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7399)

Abstract

We show that viewing labelled transition systems as relational presheaves captures several recently studied examples. This approach takes into account possible algebraic structure on labels. Weak closure of a labelled transition system is characterised as a left (2-)adjoint to a change-of-base functor.

Keywords

Full Subcategory Tile System Label Transition System Left Adjoint Monoidal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abramsky, S., Gay, S., Nagarajan, R.: Specification Structures and Propositions-as-Types for Concurrency. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 5–40. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Abramsky, S., Vickers, S.: Quantales, observational logic and process semantics. Math. Struct. Comput. Sci. 3, 161–227 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Aczel, P., Mendler, N.: A Final Coalgebra Theorem. In: Dybjer, P., Pitts, A.M., Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) CTCS 1989. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)Google Scholar
  4. 4.
    Adamek, J.: Introduction to coalgebra. Theor. App. Categories 14(8), 157–199 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bénabou, J.: Introduction to bicategories, part 1. In: Midwest Category Seminar. LNM, vol. 47, pp. 1–77. Springer (1967)Google Scholar
  6. 6.
    Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In: Logic in Computer Science, LiCS 2006. IEEE Press (2006)Google Scholar
  7. 7.
    Bonchi, F., Montanari, U.: Reactive systems (semi-)saturated semantics and coalgebras on presheaves. Theor. Comput. Sci. 410, 4044–4066 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bruni, R., Gadducci, F., Montanari, U., Sobociński, P.: Deriving Weak Bisimulation Congruences from Reduction Systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 293–307. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Bruni, R., Melgratti, H., Montanari, U.: A Connector Algebra for P/T Nets Interactions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011 – Concurrency Theory. LNCS, vol. 6901, pp. 312–326. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Burstall, R.M.: An algebraic description of programs with assertions, verification and simulation. In: Conference on Proving Assertions about Programs, pp. 7–14. ACM (1972)Google Scholar
  11. 11.
    Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Danos, V., Krivine, J., Sobociński, P.: General reversibility. In: Expressiveness in Concurrency, EXPRESS 2005. ENTCS. Elsevier (2005)Google Scholar
  13. 13.
    Fiore, M.P., Cattani, G.L., Winskel, G.: Weak bisimulation and open maps. In: Logic in Computer Science, LiCS 1999. IEEE Press (1999)Google Scholar
  14. 14.
    Gadducci, F., Montanari, U.: The tile model. In: Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 133–166. MIT Press (2000)Google Scholar
  15. 15.
    Ghilardi, S., Meloni, G.: Relational and partial variable sets and basic predicate logic. J. Symbolic Logic 61(3), 843–872 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Log. Meth. Comput. Sci. 3(4) (2007)Google Scholar
  17. 17.
    Hughes, J., Jacobs, B.: Simulations in coalgebras. Theor. Comput. Sci. 327(1-2), 71–108 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Jacobs, B.: Trace semantics for coalgebras. In: Coalgebraic Methods in Computer Science, CMCS 2004. ENTCS, vol. 106, pp. 167–184 (2004)Google Scholar
  19. 19.
    Jensen, O.H.: Mobile Processes in Bigraphs. PhD thesis, University of Cambridge (2006)Google Scholar
  20. 20.
    Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Inf. Comput. 127, 164–185 (1994)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): An Algebra of Transition Systems. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 322–336. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  22. 22.
    Kelly, G.M., Street, R.H.: Review of the elements of 2-categories. In: Category Theory. LNM, vol. 420, pp. 75–103. Springer (1973)Google Scholar
  23. 23.
    Koslowski, J.: Simulations as a genuinely categorical concepts, 2006. Talk at CT2006, White Point, Nova Scotia (June 30, 2006)Google Scholar
  24. 24.
    Leifer, J.J., Milner, R.: Deriving Bisimulation Congruences for Reactive Systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Mosses, P.: Modular structural operational semantics. J. Logic Algebr. Progr. 60-61, 195–228 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Niefield, S.: Change of base for relational variable sets. Theor. App. Categories 12(7), 248–261 (2004)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Ribeiro, P.R., Barbosa, L.S., Wang, S.: An exercise on transition systems. In: Harnessing Theories for Tool Support in Software, TTSS 2007. ENTCS, vol. 207, pp. 89–106 (2007)Google Scholar
  28. 28.
    Rosenthal, K.R.: The theory of Quantaloids. Addison-Wesley (1996)Google Scholar
  29. 29.
    Sassone, V., Sobociński, P.: Deriving bisimulation congruences using 2-categories. Nord. J. Comput. 10(2), 163–183 (2003)zbMATHGoogle Scholar
  30. 30.
    Sassone, V., Sobociński, P.: Locating reaction with 2-categories. Theor. Comput. Sci. 333(1-2), 297–327 (2005)zbMATHCrossRefGoogle Scholar
  31. 31.
    Schmitt, V., Worytkiewicz, K.: Bisimulations of enrichments. arXiv:cs/0602077v1 (2006)Google Scholar
  32. 32.
    Sobociński, P.: Deriving process congruences from reaction rules. PhD thesis, BRICS, University of Aarhus (2004)Google Scholar
  33. 33.
    Sokolova, A., de Vink, E., Woracek, H.: Weak bisimulation for action-type coalgebras. In: Category Theory in Computer Science, CTCS 2004. ENTCS, vol. 122, pp. 211–228 (2004)Google Scholar
  34. 34.
    Staton, S.: Relating coalgebraic notions of bisimulations. Log. Meth. Comput. Sci. 7(1) (2011)Google Scholar
  35. 35.
    Stell, J.G.: Granularity in change over time. In: Foundations of Geographic Information Science, pp. 95–115. Taylor & Francis (2003)Google Scholar
  36. 36.
    Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Logic in Computer Science, LiCS 1997, pp. 280–291. IEEE Press (1997)Google Scholar
  37. 37.
    Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science, pp. 1–148. Oxford University Press (1995)Google Scholar
  38. 38.
    Winskel, G., Nielsen, M.: Presheaves as transition systems. In: Partial Order Methods in Verification: DIMACS Workshop, pp. 129–140 (1996)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Paweł Sobociński
    • 1
  1. 1.ECSUniversity of SouthamptonUK

Personalised recommendations