Internal Models for Coalgebraic Modal Logics

  • Toby Wilkinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7399)


We present ongoing work into the systematic study of the use of dual adjunctions in coalgebraic modal logic. We introduce a category of internal models for a modal logic. These are constructed from syntax, and yield a generalised notion of canonical model. Further, expressivity of a modal logic is shown to be characterised by factorisation of its models via internal models and the existence of cospans of internal models.


Coalgebra Modal Logic Dual Adjunction Expressivity 


  1. 1.
    Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley, New York (1990)zbMATHGoogle Scholar
  2. 2.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)Google Scholar
  3. 3.
    Danos, V., Desharnais, J., Laviolette, F., Panangaden, P.: Bisimulation and cocongruence for probabilistic systems. Information and Computation 204(4), 503–523 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Doberkat, E.-E.: Stochastic Coalgebraic Logic. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Hasuo, I.: Generic Forward and Backward Simulations. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 406–420. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Jacobs, B., Sokolova, A.: Exemplaric Expressivity of Modal Logics. Journal of Logic and Computation 20(5), 1041–1068 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Kapulkin, K., Kurz, A., Velebil, J.: Expressivity of Coalgebraic Logic over Posets. CMCS 2010 Short contributions CWI Technical report SEN-1004:16–17 (2010)Google Scholar
  8. 8.
    Klin, B.: Coalgebraic modal logic beyond sets. Electronic Notes in Theoretical Computer Science 173, 177–201 (2007)CrossRefGoogle Scholar
  9. 9.
    Kupke, C., Kurz, A., Pattinson, D.: Algebraic semantics for coalgebraic logics. Electronic Notes in Theoretical Computer Science 106, 219–241 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theoretical Computer Science 327(1-2), 109–134 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kupke, C., Kurz, A., Pattinson, D.: Ultrafilter Extensions for Coalgebras. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 263–277. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Pavlovic, D., Mislove, M., Worrell, J.B.: Testing Semantics: Connecting Processes and Process Logics. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 308–322. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249(1), 3–80 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Schröder, L., Pattinson, D.: Strong completeness of coalgebraic modal logics. Leibniz International Proceedings in Informatics 3, 673–684 (2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Toby Wilkinson
    • 1
  1. 1.University of SouthamptonUK

Personalised recommendations