Tracing the Man in the Middle in Monoidal Categories

  • Dusko Pavlovic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7399)


Man-in-the-Middle (MM) is not only a ubiquitous attack pattern in security, but also an important paradigm of network computation and economics. Recognizing ongoing MM-attacks is an important security task; modeling MM-interactions is an interesting task for semantics of computation. Traced monoidal categories are a natural framework for MM-modelling, as the trace structure provides a tool to hide what happens in the middle. An effective analysis of what has been traced out seems to require an additional property of traces, called normality. We describe a modest model of network computation, based on partially ordered multisets (pomsets), where basic network interactions arise from the monoidal trace structure, and a normal trace structure arises from an iterative, i.e. coalgebraic structure over terms and messages used in computation and communication. The correspondence is established using a convenient monadic description of normally traced monoidal categories.


Security Protocol Monoidal Category Parallel Composition Monoidal Structure Output Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abramsky, S.: Semantics of interaction: an introduction to game semantics. In: Dybjer, P., Pitts, A. (eds.) Proceedings of the 1996 CLiCS Summer School, Isaac Newton Institute, pp. 1–31. Cambridge University Press (1997)Google Scholar
  2. 2.
    Abramsky, S.: Interaction categories. In: Burn, G.L., Gay, S.J., Ryan, M. (eds.) Theory and Formal Methods, Workshops in Computing, pp. 57–69. Springer (1993)Google Scholar
  3. 3.
    Abramsky, S.: Algorithmic game semantics: A tutorial introduction. In: Schwichtenberg, H., Steinbrüggen, R. (eds.) Proceedings of the NATO Advanced Study Institute, Marktoberdorf, pp. 21–47. Kluwer Academic Publishers (2001)Google Scholar
  4. 4.
    Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society (2004); Also arXiv:quant-ph/0402130Google Scholar
  5. 5.
    Abramsky, S., Jagadeesan, R.: New foundations for the geometry of interaction. Information and Computation 111(1), 53–119 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Aczel, P., Adamek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative theories: a coalgebraic view. Theor. Comput. Sci. 300(1-3), 1–45 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Adamek, J.: Introduction to coalgebra. Theory and Applications of Categories 14, 157–199 (2005)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Adamek, J., Milius, S., Velebil, J.: Free iterative theories: a coalgebraic view. Mathematical. Structures in Comp. Sci. 13(2), 259–320 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21, 181–185 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Anlauff, M., Pavlovic, D., Waldinger, R., Westfold, S.: Proving authentication properties in the Protocol Derivation Assistant. In: Degano, P., Küsters, R., Vigano, L. (eds.) Proceedings of FCS-ARSPA 2006. ACM (2006)Google Scholar
  11. 11.
    Bloom, S.L., Elgot, C.C.: The existence and construction of free iterative theories. J. Comput. Syst. Sci. 12(3), 305–318 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bloom, S.L., Esik, Z.: Iteration theories: the equational logic of iterative processes. Springer-Verlag New York, Inc., New York (1993)zbMATHGoogle Scholar
  13. 13.
    Cervesato, I., Meadows, C., Pavlovic, D.: An encapsulated authentication logic for reasoning about key distribution protocols. In: Guttman, J. (ed.) Proceedings of CSFW 2005, pp. 48–61. IEEE (2005)Google Scholar
  14. 14.
    Datta, A., Derek, A., Mitchell, J., Pavlovic, D.: Secure protocol composition. E. Notes in Theor. Comp. Sci., pp. 87–114 (2003)Google Scholar
  15. 15.
    Datta, A., Derek, A., Mitchell, J., Pavlovic, D.: A derivation system and compositional logic for security protocols. J. of Comp. Security 13, 423–482 (2005)Google Scholar
  16. 16.
    Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system for security protocols and its logical formalization. In: Volpano, D. (ed.) Proceedings of CSFW 2003, pp. 109–125. IEEE (2003)Google Scholar
  17. 17.
    Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: Secure protocol composition (extended abstract). In: Backes, M., Basin, D., Waidner, M. (eds.) Proceedings of FMCS 2003, pp. 11–23. ACM (2003)Google Scholar
  18. 18.
    Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: Abstraction and refinement in protocol derivation. In: Focardi, R. (ed.) Proceedings of CSFW 2004, pp. 30–47. IEEE (2004)Google Scholar
  19. 19.
    Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated key exchanges. Des. Codes Cryptography 2(2), 107–125 (1992)CrossRefGoogle Scholar
  20. 20.
    Doctorow, C.: Solving and creating captchas with free porn, (retrieved on January 2, 2012)
  21. 21.
    Durgin, N., Mitchell, J., Pavlovic, D.: A compositional logic for proving security properties of protocols. J. of Comp. Security 11(4), 677–721 (2004)Google Scholar
  22. 22.
    Durgin, N., Mitchell, J.C., Pavlovic, D.: A compositional logic for protocol correctness. In: Schneider, S. (ed.) Proceedings of CSFW 2001, pp. 241–255. IEEE (2001)Google Scholar
  23. 23.
    Pavlovic, D.: Geometry of abstraction in quantum computation. In: Mislove, M., Abramsky, S. (eds.) Clifford Lectures 2008, Proceedings of Symposia in Applied Mathematics, AMS, 28 p., (2012)Google Scholar
  24. 24.
    Fabrega, J.T., Herzog, J., Guttman, J.: Strand spaces: Proving security protocols correct. J. Comp. Security 7(2/3), 191–230 (1999)Google Scholar
  25. 25.
    Girard, J.-Y.: Towards a geometry of interaction. In: Gray, J.W., Scedrov, A. (eds.) Categories in Computer Science and Logic. Contemporary Mathematics, vol. 92, pp. 69–108. American Mathematical Society (1989)Google Scholar
  26. 26.
    Gischer, J.L.: The equational theory of pomsets. Theor. Comp. Sci. 61(2-3), 199–224 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Hasegawa, M.: The uniformity principle on traced monoidal categories. Electr. Notes Theor. Comput. Sci. 69, 137–155 (2002)CrossRefGoogle Scholar
  28. 28.
    Hyland, J.M.E., Luke Ong, C.-H.: On full abstraction for PCF: I, II, and III. Inf. Comput. 163(2), 285–408 (2000)zbMATHCrossRefGoogle Scholar
  29. 29.
    Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society 119(3), 447–468 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Kelsey, J., Schneier, B., Wagner, D.: Protocol Interactions and the Chosen Protocol Attack. In: Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 91–104. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  31. 31.
    Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Software Eng. 3(2), 125–143 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)zbMATHCrossRefGoogle Scholar
  33. 33.
    Lawvere, B.: Functorial semantics of algebraic theories. Proceedings of the National Academy of Sciences of the United States of America 50(1), 869–872 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    MacLane, S.: Categories for the Working Mathematician, 2nd edn. Graduate Texts in Mathematics, vol. 5. Springer (1997)Google Scholar
  35. 35.
    Meadows, C., Pavlovic, D.: Deriving, Attacking and Defending the GDOI Protocol. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 53–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  36. 36.
    Meadows, C., Poovendran, R., Pavlovic, D., Chang, L., Syverson, P.: Distance bounding protocols: authentication logic analysis and collusion attacks. In: Poovendran, R., Wang, C., Roy, S. (eds.) Secure Localization and Time Synchronization in Wireless Ad Hoc and Sensor Networks. Springer (2006)Google Scholar
  37. 37.
    Milner, R.: Action Calculi, or Syntactic Action Structures. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 105–121. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  38. 38.
    Milner, R.: Calculi for interaction. Acta Informatica 33(8), 707–737 (1996)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Moss, L.S.: Parametric corecursion. Theor. Comp. Sci. 260(1-2), 139–163 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large networks of computers. Commun. ACM 21, 993–999 (1978)zbMATHCrossRefGoogle Scholar
  41. 41.
    Pavlovic, D.: Categorical logic of names and abstraction in action calculus. Math. Structures in Comp. Sci. 7, 619–637 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Pavlovic, D.: Network as a Computer: Ranking Paths to Find Flows. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 384–397. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  43. 43.
    Pavlovic, D., Abramsky, S.: Specifying Interaction Categories. In: Moggi, E., Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 147–158. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  44. 44.
    Pavlovic, D., Meadows, C.: Deriving Secrecy in Key Establishment Protocols. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 384–403. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  45. 45.
    Pavlovic, D., Meadows, C.: Actor-Network Procedures. In: Ramanujam, R., Ramaswamy, S. (eds.) ICDCIT 2012. LNCS, vol. 7154, pp. 7–26. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  46. 46.
    Pratt, V.: Modelling concurrency with partial orders. Internat. J. Parallel Programming 15, 33–71 (1987)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Rivest, R.L., Shamir, A.: How to expose an eavesdropper. Commun. ACM 27, 393–394 (1984)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Dusko Pavlovic
    • 1
    • 2
  1. 1.Royal Holloway, University of LondonUK
  2. 2.University of TwenteThe Netherlands

Personalised recommendations