Vehicular Sensing: Emergence of a Massive Urban Scanner

  • Michel Ferreira
  • Ricardo Fernandes
  • Hugo Conceição
  • Pedro Gomes
  • Pedro M. d’Orey
  • Luís Moreira-Matias
  • João Gama
  • Fernanda Lima
  • Luís Damas
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 102)


Vehicular sensing is emerging as a powerful mean to collect information using the variety of sensors that equip modern vehicles. These sensors range from simple speedometers to complex video capturing systems capable of performing image recognition. The advent of connected vehicles makes such information accessible nearly in real-time and creates a sensing network with a massive reach, amplified by the inherent mobility of vehicles. In this paper we discuss several applications that rely on vehicular sensing, using sensors such as the GPS receiver, windshield cameras, or specific sensors in special vehicles, such as a taximeter in taxi cabs. We further discuss connectivity issues related to the mobility and limited wireless range of an infrastructure-less network based only on vehicular nodes.


Global Position System Sensor Network Road Network Road Segment Global Position System Receiver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Urbisnet: Urban pollution monitoring using a public transportation infrastructure for networked sensing (2012),
  2. 2.
    Barcelo, J., Montero, L., Marques, L., Carmona, C.: Travel time forecasting and dynamic origin-destination estimation for freeways based on bluetooth traffic monitoring. Transportation Research Record: Journal of the Transportation Research Board 2175, 19–27 (2010)CrossRefGoogle Scholar
  3. 3.
    Box, G., Pierce, D.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association, 1509–1526 (1970)Google Scholar
  4. 4.
    Bruntrup, R., Edelkamp, S., Jabbar, S., Scholz, B.: Incremental map generation with GPS traces. In: Proceedings of IEEE Intelligent Transportation Systems, pp. 574–579. IEEE (2005)Google Scholar
  5. 5.
    Caliskan, M., Graupner, D., Mauve, M.: Decentralized discovery of free parking places. In: Proceedings of the 3rd International Workshop on Vehicular Ad Hoc Networks, pp. 30–39. ACM (2006)Google Scholar
  6. 6.
    Commission, E.: Commission Recomendation of 8 September 2011 on support for an EU-wide eCall service in electronic communication networks for the transmission of in-vehicle emergency calls based on 112 (eCalls). Official Journal of the European Union 54(L303), 46–47 (2011)Google Scholar
  7. 7.
    Conceição, H., Damas, L., Ferreira, M., Barros, J.: Large-scale simulation of v2v environments. In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 28–33. ACM (2008)Google Scholar
  8. 8.
    Conceição, H., Ferreira, M., Barros, J.: On the Urban Connectivity of Vehicular Sensor Networks. In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 112–125. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Conceiçao, H., Ferreira, M., Barros, J.: A cautionary view of mobility and connectivity modeling in vehicular ad-hoc networks. In: IEEE 69th Vehicular Technology Conference, VTC Spring 2009, pp. 1–5. IEEE (2009)Google Scholar
  10. 10.
    Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization 10(2), 112–122 (1973)CrossRefGoogle Scholar
  11. 11.
    Edelkamp, S., Pereira, F., Sulewski, D., Costa, H.: Collaborative map generationsurvey and architecture proposal. In: Urbanism on Track Application of Tracking Technologies in Urbanism. Research in Urbanism Series, vol. 1. IOS Press, Amsterdam (2008)Google Scholar
  12. 12.
    ElBatt, T., Saraydar, C., Ames, M., Talty, T.: Potential for intra-vehicle wireless automotive sensor networks. In: 2006 IEEE Sarnoff Symposium, pp. 1–4. IEEE (2006)Google Scholar
  13. 13.
    Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., Balakrishnan, H.: The pothole patrol: using a mobile sensor network for road surface monitoring. In: ACM MobiSys (2008)Google Scholar
  14. 14.
    Ferreira, M., Conceição, H., Fernandes, R., Reis, R.: Locating cars through a vision enabled vanet. In: 2009 IEEE Intelligent Vehicles Symposium, pp. 99–104. IEEE (2009)Google Scholar
  15. 15.
    Google: Self-driving car test: Steve mahan (2012),
  16. 16.
    Hu, S.C., Wang, Y.C., Huang, C.Y., Tseng, Y.C.: A vehicular wireless sensor network for CO2 monitoring. In: IEEE Sensors, pp. 1498 –1501 (October 2009)Google Scholar
  17. 17.
    Ihler, A., Hutchins, J., Smyth, P.: Adaptive event detection with time-varying poisson processes. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 207–216. ACM, New York (2006)CrossRefGoogle Scholar
  18. 18.
    Jiang, D., Delgrossi, L.: IEEE 802.11 p: Towards an international standard for wireless access in vehicular environments. In: IEEE Vehicular Technology Conference, VTC Spring 2008, pp. 2036–2040. IEEE (2008)Google Scholar
  19. 19.
    Lee, J., Park, G.-L., Kim, H., Yang, Y.-K., Kim, P., Kim, S.-W.: A Telematics Service System Based on the Linux Cluster. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4490, pp. 660–667. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Lee, J., Shin, I., Park, G.L.: Analysis of the passenger pick-up pattern for taxi location recommendation. In: International Conference on Networked Computing and Advanced Information Management, vol. 1, pp. 199–204 (September 2008)Google Scholar
  21. 21.
    Li, B., Zhang, D., Sun, L., Chen, C., Li, S., Qi, G., Yang, Q.: Hunting or waiting? discovering passenger-finding strategies from a large-scale real-world taxi dataset. In: 2011 IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 63–68 (March 2011)Google Scholar
  22. 22.
    Li, X., Shu, W., Li, M., Huang, H.Y., Luo, P.E., Wu, M.Y.: Performance Evaluation of Vehicle-Based Mobile Sensor Networks for Traffic Monitoring. IEEE Transactions on Vehicular Technology 58(4), 1647–1653 (2009)CrossRefGoogle Scholar
  23. 23.
    Lima, F., Ferreira, M.: Mining spatial data from GPS traces for automatic road network extraction (2009)Google Scholar
  24. 24.
    Liu, L., Andris, C., Biderman, A., Ratti, C.: Uncovering taxi drivers mobility intelligence through his trace. IEEE Pervasive Computing 160 (2009)Google Scholar
  25. 25.
    Mahmud, S., Alles, S.: In-vehicle network architecture for the next-generation vehicles (2005)Google Scholar
  26. 26.
    Moreira-Matias, L., Gama, J., Ferreira, M., Damas, L.: A predictive model for the passenger demand on a taxi network. In: Intelligent Transportation Systems Conference (to appear, September 2012)Google Scholar
  27. 27.
    Norton, H.N.: Handbook of Transducers. Prentice Hall (1989)Google Scholar
  28. 28.
    Rodrigues, J., Vieira, F., Vinhoza, T., Barros, J., Cunha, J.: A non-intrusive multi-sensor system for characterizing driver behavior. In: International IEEE Conference on Intelligent Transportation Systems, pp. 1620 –1624 (September 2010)Google Scholar
  29. 29.
    Schroedl, S., Wagstaff, K., Rogers, S., Langley, P., Wilson, C.: Mining GPS traces for map refinement. Data Mining and Knowledge Discovery 9(1), 59–87 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Michel Ferreira
    • 1
  • Ricardo Fernandes
    • 1
  • Hugo Conceição
    • 1
  • Pedro Gomes
    • 1
  • Pedro M. d’Orey
    • 1
  • Luís Moreira-Matias
    • 2
  • João Gama
    • 5
  • Fernanda Lima
    • 3
  • Luís Damas
    • 4
  1. 1.Instituto de Telecomunicações, DCC/FCUniversidade do PortoPortoPortugal
  2. 2.LIAAD-INESC Porto and DEI/FEUniversidade do PortoPortoPortugal
  3. 3.S.E. Engenharia CartográficaInstituto Militar de EngenhariaRio de JaneiroBrasil
  4. 4.Geolink Lda.PortoPortugal
  5. 5.LIAAD - INESC Porto L.A., FEPUniversity of PortoPortoPortugal

Personalised recommendations