Skip to main content

Automata Learning through Counterexample Guided Abstraction Refinement

  • Conference paper
FM 2012: Formal Methods (FM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7436))

Included in the following conference series:

Abstract

Abstraction is the key when learning behavioral models of realistic systems. Hence, in most practical applications where automata learning is used to construct models of software components, researchers manually define abstractions which, depending on the history, map a large set of concrete events to a small set of abstract events that can be handled by automata learning tools. In this article, we show how such abstractions can be constructed fully automatically for a restricted class of extended finite state machines in which one can test for equality of data parameters, but no operations on data are allowed. Our approach uses counterexample-guided abstraction refinement: whenever the current abstraction is too coarse and induces nondeterministic behavior, the abstraction is refined automatically. Using Tomte, a prototype tool implementing our algorithm, we have succeeded to learn – fully automatically – models of several realistic software components, including the biometric passport and the SIP protocol.

Supported by STW project 11763 Integrating Testing And Learning of Interface Automata (ITALIA) and EU FP7 grant no 214755 (QUASIMODO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aarts, F., Jonsson, B., Uijen, J.: Generating Models of Infinite-State Communication Protocols Using Regular Inference with Abstraction. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Aarts, F., Schmaltz, J., Vaandrager, F.W.: Inference and Abstraction of the Biometric Passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 673–686. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the Correspondence Between Conformance Testing and Regular Inference. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A Succinct Canonical Register Automaton Model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 366–380. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Cho, C.Y., Babic, D., Shin, E.C.R., Song, D.: Inference and analysis of formal models of botnet command and control protocols. In: Conference on Computer and Communications Security, pp. 426–439. ACM (2010)

    Google Scholar 

  7. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

    Article  MathSciNet  Google Scholar 

  8. Comparetti, P.M., Wondracek, G., Krügel, C., Kirda, E.: Prospex: Protocol specification extraction. In: IEEE Symposium on Security and Privacy, pp. 110–125. IEEE CS (2009)

    Google Scholar 

  9. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.: The Daikon system for dynamic detection of likely invariants. SCP 69(1-3), 35–45 (2007)

    MathSciNet  MATH  Google Scholar 

  10. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press (April 2010)

    Google Scholar 

  11. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 263–277. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Hungar, H., Niese, O., Steffen, B.: Domain-Specific Optimization in Automata Learning. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Ip, C.N., Dill, D.L.: Better verification through symmetry. FMSD 9(1/2), 41–75 (1996)

    Google Scholar 

  15. Leucker, M.: Learning Meets Verification. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 127–151. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Loiseaux, C., Graf, S., Sifakis, J., Boujjani, A., Bensalem, S.: Property preserving abstractions for the verification of concurrent systems. FMSD 6(1), 11–44 (1995)

    MATH  Google Scholar 

  17. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Niese, O.: An Integrated Approach to Testing Complex Systems. PhD thesis, University of Dortmund (2003)

    Google Scholar 

  19. Raffelt, H., Steffen, B., Berg, T.: Learnlib: a library for automata learning and experimentation. In: FMICS 2005, pp. 62–71. ACM Press, New York (2005)

    Google Scholar 

  20. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: Learnlib: a framework for extrapolating behavioral models. STTT 11(5), 393–407 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F. (2012). Automata Learning through Counterexample Guided Abstraction Refinement. In: Giannakopoulou, D., Méry, D. (eds) FM 2012: Formal Methods. FM 2012. Lecture Notes in Computer Science, vol 7436. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32759-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32759-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32758-2

  • Online ISBN: 978-3-642-32759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics