Measles Epidemics and PEPA: An Exploration of Historic Disease Dynamics Using Process Algebra

  • Soufiene Benkirane
  • Rachel Norman
  • Erin Scott
  • Carron Shankland
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7436)


We demonstrate the use of the process algebra PEPA for realistic models of epidemiology. The results of stochastic simulation of the model are shown, and ease of modelling is compared to that of Bio-PEPA. PEPA is shown to be capable of capturing the complex disease dynamics of the historic data for measles epidemics in the UK from 1944–1964, including persistent fluctuations due to seasonal effects.


Stochastic Simulation Direct Transmission Contact Rate Process Algebra Infectious Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, R.M., May, R.M.: The population-dynamics of micro-parasites and their invertebrate hosts. Philosophical Transactions of the Royal Society of London Series B 291, 451–524 (1981)CrossRefGoogle Scholar
  2. 2.
    Benkirane, S.: Process algebra for epidemiology: evaluating and enhancing the ability of PEPA to describe biological systems. Ph.D. thesis, University of Stirling (2011),
  3. 3.
    Benkirane, S., Hillston, J., McCaig, C., Norman, R., Shankland, C.: Improved Continuous Approximation of PEPA Models through Epidemiological Examples. In: From Biology to Concurrency and Back, FBTC 2008. ENTCS, vol. 229, pp. 59–74. Elsevier (2008)Google Scholar
  4. 4.
    Bjørnstad, O.N., Finkenstädt, B.F., Grenfell, B.T.: Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model. Ecological Monographs 72(2), 169–184 (2002)Google Scholar
  5. 5.
    Bolker, B., Grenfell, B.: Space, persistence and dynamics of measles epidemics. Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences 348(1325), 309–320 (1995)CrossRefGoogle Scholar
  6. 6.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410(33-34), 3065–3084 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ciocchetta, F., Hillston, J.: Bio-PEPA for epidemiological models. Electronic Notes in Theoretical Computer Science 261, 43–69 (2010); Proceedings of Practical Application of Stochastic Modelling (PASM 2009) Google Scholar
  8. 8.
    Duguid, A., Gilmore, S., Guerriero, M.L., Hillston, J., Loewe, L.: Design and development of software tools for Bio-PEPA. In: Proc. of Winter Simulation Conference 2009, pp. 956–967 (2009)Google Scholar
  9. 9.
    Duke, T., Mgone, C.S.: Measles: not just another viral exanthem. The Lancet 361, 763–773 (2003)CrossRefGoogle Scholar
  10. 10.
    Durrett, R.: Probability: Theory and Examples. Cambridge Series in Statistical and Probabilistic Mathematics (2010)Google Scholar
  11. 11.
    Fine, P.E., Clarkson, J.A.: Measles in England and Wales–I: An analysis of factors underlying seasonal patterns. Int. Journal of Epidemiology 11(1), 5–14 (1982)CrossRefGoogle Scholar
  12. 12.
    Finkenstädt, B.F., Keeling, M., Grenfell, B.T.: Patterns of density dependence in measles dynamics. Proceedings of the Royal Society B 265, 753–762 (1998)CrossRefGoogle Scholar
  13. 13.
    Gilmore, S., Tribastone, M., Duguid, A., Clark, A.: PEPA plug-in for eclipse (2008),
  14. 14.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press (1996)Google Scholar
  15. 15.
    Hillston, J.: Tuning systems: From composition to performance. The Computer Journal 48(4), 385–400 (2005); The Needham Lecture PaperGoogle Scholar
  16. 16.
    Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. Proceedings of the Royal Society of London A 115, 700–721 (1927)zbMATHCrossRefGoogle Scholar
  17. 17.
    McCaig, C., Begon, M., Norman, R., Shankland, C.: A rigorous approach to investigating common assumptions about disease transmission: Process algebra as an emerging modelling methodology for epidemiology. Theory in Biosciences 130, 19–29 (2011); special issue on emerging modelling methodologiesGoogle Scholar
  18. 18.
    McCaig, C., Norman, R., Shankland, C.: From individuals to populations: A symbolic process algebra approach to epidemiology. Mathematics in Computer Science 2(3), 139–155 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    McCaig, C.: From individuals to populations: changing scale in process algebra models of biological systems. Ph.D. thesis, University of Stirling (2008),
  20. 20.
    Miller, D.L.: Frequency of complications of measles, 1963. British Medical Journal 2, 75–78 (1964)CrossRefGoogle Scholar
  21. 21.
    Norman, R., Shankland, C.: Developing the Use of Process Algebra in the Derivation and Analysis of Mathematical Models of Infectious Disease. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 404–414. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Perry, R., Halsey, N.: The clinical significance of measles: A review. Journal of Infectious Diseases 189(1), S4–S16 (2004)Google Scholar
  23. 23.
  24. 24.
    Tofts, C.: Processes with probabilities, priority and time. Formal Aspects of Computing 6, 536–564 (1994)zbMATHCrossRefGoogle Scholar
  25. 25.
    University of Cambridge: Pathogen population dynamics (2002),
  26. 26.
    World Health Organization: The world health report 2004 (2004),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Soufiene Benkirane
    • 1
  • Rachel Norman
    • 1
  • Erin Scott
    • 1
  • Carron Shankland
    • 1
  1. 1.University of StirlingStirlingUK

Personalised recommendations