Skip to main content

Applying Conventional Ab Initio and Density Functional Theory Approaches to Electric Property Calculations. Quantitative Aspects and Perspectives

  • Chapter
  • First Online:
Applications of Density Functional Theory to Chemical Reactivity

Part of the book series: Structure and Bonding ((STRUCTURE,volume 149))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buckingham AD in Pullman B (ed) (1978) Intermolecular interactions: from diatomics to biopolymers, Wiley, New York, p. 1

    Google Scholar 

  2. Kaplan IG (2006) Intermolecular interactions. Wiley, Chichester

    Google Scholar 

  3. Hanna DC, Yuratich MA, Cotter D (1979) Nonlinear optics of free atoms and molecules. Springer, Berlin

    Google Scholar 

  4. Hartmann JM, Boulet C, Robert D (2008) Collisional effects on molecular spectra: laboratory experiments and models, consequences for applications. Elsevier, Amsterdam

    Google Scholar 

  5. Gray CG, Gubbins KE (1984) Theory of molecular fluids. Clarendon, Oxford

    Google Scholar 

  6. Gray CG, Gubbins KE, Joslin CG (2012) Theory of molecular fluids. volume 2: applications. Clarendon, Oxford

    Google Scholar 

  7. Berkowitz M, Parr RG (1988) J Chem Phys 88:2554

    CAS  Google Scholar 

  8. Vela A, Gázquez JL (1990) J Am Chem Soc 112:1490

    CAS  Google Scholar 

  9. Liu PH, Hunt KLC (1995) J Chem Phys 103:10597

    CAS  Google Scholar 

  10. Torrent-Succarat M, De Proft F, Geerlings P (2005) J Phys Chem A 109:6071

    Google Scholar 

  11. Donald KJ (2006) J Phys Chem A 110:2283

    CAS  Google Scholar 

  12. Matito E, Putz MV (2011) J Phys Chem A 115:12459–12462

    CAS  Google Scholar 

  13. Karelson K, Lobanov VS (1996) Phys Rev 96:1027–1043

    CAS  Google Scholar 

  14. Hansch C, Steinmetz WE, Leo AJ, Mekapati SB, Kurup A, Hoekman D (2003) J Chem Inf Comput Sci 43:120–125

    CAS  Google Scholar 

  15. Shelton DP, Rice JE (1994) Chem Rev 94:3–29

    CAS  Google Scholar 

  16. Maroulis G, Sana M, Leroy G (1981) Int J Quant Chem 19:43–60

    CAS  Google Scholar 

  17. Maroulis G (1988) Int J Quant Chem 24:185–190

    Google Scholar 

  18. Sordo JA (1988) Comp Phys Comm 113:85–104

    Google Scholar 

  19. Maroulis G, In: Sen KD (2002) Reviews of modern quantum chemistry. A celebration of Robert G. Parr, World Scientific, Singapore, pp 320–339

    Google Scholar 

  20. Buckingham AD (1967) Adv Chem Phys 12:107–142, and references therein

    CAS  Google Scholar 

  21. McLean AD, Yoshimine M (1967) J Chem Phys 47:1927–1935

    CAS  Google Scholar 

  22. Cohen HD, Roothaan CCJ (1965) J Chem Phys 43:S34–S39

    CAS  Google Scholar 

  23. Maroulis G, Bishop DM (1985) Chem Phys Lett 114:182–186

    CAS  Google Scholar 

  24. Bishop DM, Maroulis G (1985) J Chem Phys 82:2380–2391

    CAS  Google Scholar 

  25. Maroulis G, Thakkar AJ (1988) J Chem Phys 88:7623–7632

    CAS  Google Scholar 

  26. Maroulis G, Thakkar AJ (1988) J Chem Phys 89:7320–7323

    CAS  Google Scholar 

  27. Maroulis G (1991) J Chem Phys 94:1182–1190

    CAS  Google Scholar 

  28. Maroulis G (1998) J Chem Phys 108:5432–5448

    CAS  Google Scholar 

  29. Dykstra CE (1988) Ab initio calculation of the structures and properties of molecules. Elsevier, Amsterdam

    Google Scholar 

  30. Sauer SPA (2011) Molecular electromagnetism: a computational chemistry approach. Oxford University Press, Oxford

    Google Scholar 

  31. Maroulis G (ed) (2006) Atoms, molecules and clusters in electric fields: theoretical approaches to the calculation of electric polarizability. Imperial College Press, London

    Google Scholar 

  32. Maroulis G (ed) (2006) Computational aspects of electric polarizability calculations: atoms, molecules and clusters. Ios Press, Amsterdam

    Google Scholar 

  33. Papadopoulos MG, Sadlej AJ, Leszczynski J (eds) (2006) Non-linear optical properties of matter. from molecules to condensed phases. Springer, Berlin

    Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB et al (1998) GAUSSIAN 98, Revision A.7. Gaussian, Pittsburgh PA

    Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB et al (2004) GAUSSIAN 03, Revision D.01. Gaussian, Wallingford, CT

    Google Scholar 

  36. Szabo A, Ostlund NS (1982) Modern quantum chemistry. McMillan, New York

    Google Scholar 

  37. Wilson S (1984) Electron correlation in molecules. Clarendon, Oxford

    Google Scholar 

  38. Urban U, Cernusak I, Kellö V, Noga J (1987) Methods Comput Chem 1:117

    Google Scholar 

  39. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic-structure theory. Wiley, Chichester

    Google Scholar 

  40. Wilson S (1987) Adv Chem Phys 67:439–500

    CAS  Google Scholar 

  41. Davidson ER, Feller D (1986) Chem Rev 86:681

    CAS  Google Scholar 

  42. Thakkar AJ, Koga T, Saito M, Hoffmeyer RE (1993) S27, 343–354

    Google Scholar 

  43. Koga T, Saito M, Hoffmeyer RE, Thakkar AJ (1994) JMolStruct (THEOCHEM) 306:249–260

    Google Scholar 

  44. Prascher BP, Woon DE, Peterson KA, Dunning TH Jr, Wilson AK (2011) Theor Chem Acc 128:69–82

    CAS  Google Scholar 

  45. Kellö V, Sadlej AJ (1995) Theor Chim Acta 91:353–371

    Google Scholar 

  46. Zuev MB, Nefediev SE (2004) J Comput Methods Sci Eng 4:481–491

    CAS  Google Scholar 

  47. Arruda PM, Canal Neto A, Jorge FE (2009) Int J Quant Chem 109:1189–1199

    CAS  Google Scholar 

  48. Baranowska AJ, Sadlej AJ (2010) J Comput Chem 31:552–560

    CAS  Google Scholar 

  49. de Berrêdo RC, Jorge FE, Jorge SS, Centoducatte R (2011) Comput Theor Chem 965:236–239

    Google Scholar 

  50. Liu SY, Dykstra CE (1987) J Phys Chem 91:1749–1754

    CAS  Google Scholar 

  51. Dykstra CE, Liu SY, Malik DJ (1989) Adv Chem Phys 75:37–111

    CAS  Google Scholar 

  52. Spackman MA (1989) J Phys Chem 93:7594–7603

    CAS  Google Scholar 

  53. Maroulis G, Bishop DM (1985) J Phys B 24:4675–4682

    Google Scholar 

  54. Maroulis G, Bishop DM (1986) Mol Phys 57:359–367

    CAS  Google Scholar 

  55. Maroulis G, Bishop DM (1986) J Phys B 19:369–377

    CAS  Google Scholar 

  56. Maroulis G, Bishop DM (1986) Mol Phys 58:273–283

    CAS  Google Scholar 

  57. Maroulis G, Makris C, Hohm U, Goebel D (1997) J Phys Chem A 101:953–956

    CAS  Google Scholar 

  58. Maroulis G (1994) J Chem Phys 101:4949–4955

    CAS  Google Scholar 

  59. Maroulis G (1992) Chem Phys Lett 199:250–256

    CAS  Google Scholar 

  60. Maroulis G, Pouchan C (1998) Phys Rev 57:2440–2447

    CAS  Google Scholar 

  61. Maroulis G (2003) Chem Phys 291:81–95

    CAS  Google Scholar 

  62. Maroulis G, Thakkar AJ (1991) J Chem Phys 95:9060–9064

    CAS  Google Scholar 

  63. Maroulis G (1996) Chem Phys Lett 259:654–660

    CAS  Google Scholar 

  64. Maroulis G (1996) J Chem Phys 105:8467–8468

    CAS  Google Scholar 

  65. Maroulis G, Xenides D (1999) J Phys Chem A 103:4590–4593

    CAS  Google Scholar 

  66. Maroulis G, Pouchan C (2003) Phys Chem Chem Phys 5:1992–1995

    CAS  Google Scholar 

  67. Karamanis P, Maroulis G, Pouchan C (2006) J Chem Phys 124:071101

    Google Scholar 

  68. Maroulis G, Karamanis P, Pouchan C (2007) J Chem Phys 126:154316

    Google Scholar 

  69. Birnbaum G (1985) Phenomena induced by intermolecular interactions. Plenum, New York

    Google Scholar 

  70. Tabisz GC, Neuman MN (eds) (1995) Collision- and interaction-induced spectroscopy. Kluwer, Dordrecht

    Google Scholar 

  71. Głaz W, Bancewicz T, Godet JL, Maroulis G, Haskopoulos A (2006) Phys Rev A 73:042708

    Google Scholar 

  72. Chrysos M, Rachet F, Egorova NI, Kouzov AP (2007) Phys Rev A 75:012707

    Google Scholar 

  73. Chrysos M, Kouzov AP, Egorova NI, Rachet F (2008) Phys Rev Lett 100:133007

    CAS  Google Scholar 

  74. Chrysos M, Dixneuf S, Rachet F (2009) Phys Rev A 80:054701

    Google Scholar 

  75. Baranowska A, Fernández B, Rizzo A, Jansik B (2009) Phys Chem Chem Phys 11:9871–9883

    CAS  Google Scholar 

  76. El-Kader, El-Sheikh, Bancewicz T, Hellmenn R (2009) J Chem Phys 131:044314

    CAS  Google Scholar 

  77. Zvereva-Loëte N, Kalugina YN, Boudon V, Buldakov MA, Cherepanov VN (2010) J Chem Phys 133:184302

    Google Scholar 

  78. Buldakov MA, Cherepanov VN, Kalugina YN, Zvereva-Loëte N, Boudon V (2010) J Chem Phys 132:164304

    Google Scholar 

  79. Haskopoulos A, Maroulis G (2010) J Phys Chem A 114:8730–8741

    CAS  Google Scholar 

  80. Hartmann JM, Boulet C, Jacquemart D (2011) J Chem Phys 134:094316

    Google Scholar 

  81. Boys Sf, Bernardi F (1970) 19:553–556

    Google Scholar 

  82. Maroulis G, Haskopoulos A (2001) Chem Phys Lett 349:335–341

    CAS  Google Scholar 

  83. Maroulis G, Haskopoulos A (2002) Chem Phys Lett 358:64–70

    CAS  Google Scholar 

  84. Maroulis G, Haskopoulos A, Xenides D (2004) Chem Phys Lett 396:59–65

    CAS  Google Scholar 

  85. Haskopoulos A, Xenides D, Maroulis G (2005) Chem Phys 309:271–275

    CAS  Google Scholar 

  86. Maroulis G, Haskopoulos A, Głaz W, Bancewicz T, Godet JL (2006) Chem Phys Lett 428:28–33

    CAS  Google Scholar 

  87. Bancewicz T, Głaz W, Godet JL, Maroulis G (2008) J Chem Phys 129:124306

    Google Scholar 

  88. Haskopoulos A, Maroulis G (2010) Chem Phys Lett 367:127–135

    CAS  Google Scholar 

  89. Xenides D, Hantzis A, Maroulis G (2011) Chem Phys 382:80–87

    CAS  Google Scholar 

  90. Chantzis A, Maroulis G (2011) Chem Phys Lett 507:42–47

    CAS  Google Scholar 

  91. Głaz W, Godet JL, Haskopoulos A, Bancewicz T, Maroulis G (2011) Phys Rev A 84:012503

    Google Scholar 

  92. Maroulis G (1995) Int J Quant Chem 55:173–180

    CAS  Google Scholar 

  93. Varmuza K (1980) Pattern recognition in chemistry. Springer, Heidelberg

    Google Scholar 

  94. Maroulis G (1999) J Chem Phys 111:583–591

    CAS  Google Scholar 

  95. Xenides D (2007) J Mol Struct (THEOCHEM) 804:41–46

    CAS  Google Scholar 

  96. Christodouleas C, Xenides D, Simos TE (2010) J Comput Chem 31:412–420

    CAS  Google Scholar 

  97. Chartrand G, Lesniak L (1986) Graphs and digraphs. Wadsworth, Belmont

    Google Scholar 

  98. Spath H (1980) Cluster analysis algorithms. Ellis Horwood, Chichester

    Google Scholar 

  99. Antoine R, Rayane D, Allouche AR, Aubert-Frecon M, Benichou E, Dalby FW, Dugourd PH, Broyer M, Guet C (1999) J Chem Phys 110:5568–5577

    CAS  Google Scholar 

  100. Tikhonov G, Kasperovich K, Wong K, Kresin VV (2001) Phys Rev A 64:063202

    Google Scholar 

  101. Bowlan J, Liang A, de Heer WA (2011) Phys Rev Lett 106:043401

    CAS  Google Scholar 

  102. Calaminici P, Jug K, Köster A (1999) J Chem Phys 111:4613–4620

    CAS  Google Scholar 

  103. Jiemchooroj A, Norman P, Semelius B (2006) J Chem Phys 125:124306

    Google Scholar 

  104. Aguado A, Vega A, Balbás LC (2011) Phys Rev B 84:165450

    Google Scholar 

  105. Ekstrom CR, Schmiedmayer J, Chapman MS, Hammond TD, Pritchard DE (1995) Phys Rev A 51:3883–3888

    CAS  Google Scholar 

  106. Thakkar AJ, Lupinetti C (2005) Chem Phys Lett 402:270–273

    CAS  Google Scholar 

  107. Maroulis G, Begué D, Pouchan C (2003) J Chem Phys 119:794–797

    CAS  Google Scholar 

  108. Maroulis G (2004) J Chem Phys 121:10519–10524

    CAS  Google Scholar 

  109. Papadopoulos MG, Reis H, Avramopoulos A, Erkoc S, Amirouche L (2005) J Phys Chem B 109:18822–18830

    CAS  Google Scholar 

  110. Xenides D, Maroulis G (2007) J Comput Methods Sci Eng 7:431–442

    CAS  Google Scholar 

  111. Karamanis P, Maroulis G (2005) Match Commun Math Comput Chem 53:269–282

    CAS  Google Scholar 

  112. Maroulis G, Haskopoulos (2009) J Comput Theor Nanosci 6:418–427

    CAS  Google Scholar 

  113. Maroulis G (2009) J Comput Theor Nanosci 6:886–893

    CAS  Google Scholar 

  114. Maroulis G (2011) Theor Chem Acc 129:437–445

    CAS  Google Scholar 

  115. Karamanis P, Maroulis G (2011) J Phys Org Chem 24:588–599

    CAS  Google Scholar 

  116. Petterson M, Lundell J, Räsänen M (1995) J Chem Phys 102:6423–6431

    Google Scholar 

  117. Petterson M, Lundell J, Räsänen M (1999) Eur J Inorg Chem 729–737 and references therein

    Google Scholar 

  118. Buck U, Farnik M (2006) Int Rev Phys Chem 25:583–612, and references therein

    CAS  Google Scholar 

  119. Buck U (2002) J Phys Chem A 106:10049–10062

    CAS  Google Scholar 

  120. Nahler NH, Baumfalk R, Buck U, Bihary Z, Benny Gerber R, Friedrich B (2003) J Chem Phys 119:224–231

    CAS  Google Scholar 

  121. Maroulis G (2008) J Chem Phys 129:044314

    Google Scholar 

  122. Maroulis G (2000) J Chem Phys 113:1813–1820

    CAS  Google Scholar 

  123. Rodriguez J, Laria D, Marceca EJ, Estrin DA (1999) J Chem Phys 110:9039–9047

    CAS  Google Scholar 

  124. Ghanty TK, Ghosh SK (2003) J Chem Phys 118:8547–8550

    CAS  Google Scholar 

  125. Maroulis G (2012) Int J Quant Chem 112:2231–2241

    CAS  Google Scholar 

  126. Frisch MJ, Pople JA, Del Bene JE (1985) J Phys Chem 89:3664–3669

    CAS  Google Scholar 

  127. Champagne B, Perpète EA, Jacquemin D, van Gisbergen SJA, Baerends EJ, Soubra-Ghaoui C, Robins KA, Kirtman B (2000) J Phys Chem A 104:4755–4763

    CAS  Google Scholar 

  128. Maroulis G (2012) Chem Phys Lett 525–526:49–53

    Google Scholar 

  129. Maroulis G, Haskopoulos A (2012) Comp Theor Chem 988:34–41

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Maroulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maroulis, G. (2012). Applying Conventional Ab Initio and Density Functional Theory Approaches to Electric Property Calculations. Quantitative Aspects and Perspectives. In: Putz, M., Mingos, D. (eds) Applications of Density Functional Theory to Chemical Reactivity. Structure and Bonding, vol 149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32753-7_3

Download citation

Publish with us

Policies and ethics