Advertisement

Towards Geometric Mapping for Semi-autonomous Mobile Robots

  • Georg Arbeiter
  • Richard Bormann
  • Jan Fischer
  • Martin Hägele
  • Alexander Verl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7463)

Abstract

Semi-autonomous mobile robots are a promising alternative for tasks that are too challenging for autonomous robots. Especially in an unstructured environment, full autonomy is still far from being realized. In order to enable the human operator to control the robot properly, visualization of the environment is crucial. In this paper, we introduce a pipeline for geometric mapping that uses narrow field of view RGB-D cameras as input source and builds a geometric map of the environment while the robot either is operated manually or moves autonomously. Geometric shapes are extracted from subsequent sensor frames and are clipped and merged in a geometric feature map. Evaluation is done both in simulation and on the real robot.

Keywords

Point Cloud Iterative Close Point Iterative Close Point Kinect Camera Common Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Close-range scene segmentation and reconstruction of 3D point cloud maps for mobile manipulation in domestic environments. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1–6 (2009)Google Scholar
  2. 2.
    Rusu, R.B., Marton, Z.C., Blodow, N., Holzbach, A., Beetz, M.: Model-based and learned semantic object labeling in 3D point cloud maps of kitchen environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, MO, USA (2009)Google Scholar
  3. 3.
    Nüchter, A., Surmann, H., Hertzberg, J.: Automatic model refinement for 3D reconstruction with mobile robots. In: 3DIM 2003, pp. 394–401. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  4. 4.
    Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments. In: The 12th International Symposium on Experimental Robotics (ISER) (2010)Google Scholar
  5. 5.
    Thrun, S., Hahnel, D., Ferguson, D., Montemerlo, M., Triebel, R., Burgard, W., Baker, C., Omohundro, Z., Thayer, S., Whittaker, W.: A system for volumetric robotic mapping of abandoned mines. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2003, vol. 3, pp. 4270–4275 (2003)Google Scholar
  6. 6.
    Carff, J., Johnson, M., El-Sheikh, E., Pratt, J.: Human-robot team navigation in visually complex environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 3043–3050 (2009)Google Scholar
  7. 7.
    Cherubini, A., Oriolo, G., Macri, F., Aloise, F., Babiloni, F., Cincotti, F., Mattia, D.: Development of a multimode navigation system for an assistive robotics project, pp. 2336–2342. IEEE (April 2007)Google Scholar
  8. 8.
    Goodfellow, I., Koenig, N., Muja, M., Pantofaru, C., Sorokin, A., Takayama, L.: Help me help you: interfaces for personal robots. In: Proceedings of the 5th ACM/IEEE International Conference on Human-Robot Interaction, pp. 187–188 (2010)Google Scholar
  9. 9.
    Pitzer, B., Styer, M., Bersch, C., DuHadway, C., Becker, J.: Towards perceptual shared autonomy for robotic mobile manipulation. In: ICRA, pp. 6245–6251 (2011)Google Scholar
  10. 10.
    Arbeiter, G., Hägele, M., Verl, A.: Incremental field of view dependent registration of point clouds and extraction of table-tops. In: 2011 IEEE/ICRA International Conference on Robotics and Automation (ICRA 2011), Workshop on Semantic Perception, Mapping and Exploration (2011)Google Scholar
  11. 11.
    Holwerda, K.: Complete boolean description (1998), http://boolean.klaasholwerda.nl/algdoc/top.html
  12. 12.
    Schutte, K.: Knowledge Based Recognition of Man-Made Objects. PhD thesis, University of Twente (1994)Google Scholar
  13. 13.
    Zalik, B., Gombosi, M., Podgorelec, D.: A quick intersection algorithm for arbitrary polygons. In: SCCG 1998 Conf. on Comput. Graphics and it’s Applicat., pp. 195–204 (1998)Google Scholar
  14. 14.
    Leonov, M.: PolyBoolean . comparison.... (1998), http://www.complex-a5.ru/polyboolean/comp.html
  15. 15.
    Vatti, B.R.: A generic solution to polygon clipping. Commun. ACM 35, 56–63 (1992)CrossRefGoogle Scholar
  16. 16.
    Luck, J., Little, C., Hoff, W.: Registration of range data using a hybrid simulated annealing and iterative closest point algorithm. In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 3739–3744 (2000)Google Scholar
  17. 17.
    Parlitz, C., Hägele, M., Klein, P., Seifert, J., Dautenhahn, K.: Care-o-bot 3 - rationale for human-robot interaction design. In: Proceedings of 39th International Symposium on Robotics (ISR), Seoul, Korea (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Georg Arbeiter
    • 1
  • Richard Bormann
    • 1
  • Jan Fischer
    • 1
  • Martin Hägele
    • 1
  • Alexander Verl
    • 1
  1. 1.Institute for Manufacturing Engineering and AutomationFraunhofer IPAStuttgartGermany

Personalised recommendations