Skip to main content

Efficient Object Categorization with the Surface-Approximation Polynomials Descriptor

  • Conference paper
Spatial Cognition VIII (Spatial Cognition 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7463))

Included in the following conference series:

Abstract

Perception of object categories is a key functionality towards more versatile autonomous robots. Object categorization enables robots to understand their environments even if certain instances of objects have never been seen before. In this paper we present the novel descriptor Surface-Approximation Polynomials (SAP) that directly computes a global description on point cloud surfaces of objects based on polynomial approximations of surface cuts. This descriptor is directly applicable to point clouds captured with time-of-flight or other depth sensors without any data preprocessing or normal computation. Hence, it is generated very fast. Together with a preceding pose normalization, SAP is invariant to scale and partially invariant to rotations. We demonstrate experiments in which SAP categorizes 78 % of test objects correctly while needing only 57 ms for the computation. This way SAP is superior to GFPFH, GRSD and VFH according to both criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rusu, R.B., Holzbach, A., Beetz, M., Bradski, G.: Detecting and segmenting objects for mobile manipulation. In: ICCV, S3DV Workshop (2009)

    Google Scholar 

  2. Marton, Z.C., Pangercic, D., Blodow, N., Beetz, M.: Combined 2D-3D Categorization and Classification for Multimodal Perception Systems. The International Journal of Robotics Research 30(11), 1378–1402 (2011)

    Article  Google Scholar 

  3. Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the viewpoint feature histogram. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan (2010)

    Google Scholar 

  4. Galleguillos, C., Belongie, S.: Context based object categorization: A critical survey. Computer Vision and Image Understanding (CVIU) 114, 712–722 (2010)

    Article  Google Scholar 

  5. Zhang, H., Berg, A.C., Maire, M., Malik, J.: SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2126–2136 (2006)

    Google Scholar 

  6. Deng, J., Berg, A.C., Li, K., Fei-Fei, L.: What Does Classifying More Than 10,000 Image Categories Tell Us? In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 71–84. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. PAMI 21(1), 433–449 (1999)

    Article  Google Scholar 

  8. Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image Vision Computing 10, 557–565 (1992)

    Article  Google Scholar 

  9. Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough Transform and 3D SURF for Robust Three Dimensional Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 589–602. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Tombari, F., Salti, S., Di Stefano, L.: Unique Signatures of Histograms for Local Surface Description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Knopp, J., Prasad, M., Van Gool, L.: Orientation invariant 3D object classification using hough transform based methods. In: Proc. of the ACM Workshop on 3D Object Retrieval, pp. 15–20 (2010)

    Google Scholar 

  12. Toldo, R., Castellani, U., Fusiello, A.: A bag of words approach for 3D object categorization. In: Proc. of Int. Conference on Computer Vision, pp. 116–127 (2009)

    Google Scholar 

  13. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Tr. on Graphics 21(4), 807–832 (2002)

    Article  Google Scholar 

  14. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Symposium on Geometry Processing (June 2003)

    Google Scholar 

  15. Pu, J., Yi, L., Guyu, X., Hongbin, Z., Weibin, L., Uehara, Y.: 3D model retrieval based on 2D slice similarity measurements. In: Proceedings of the 3D Data Processing, Visualization, and Transmission, pp. 95–101 (2004)

    Google Scholar 

  16. Endres, F., Plagemann, C., Stachniss, C., Burgard, W.: Unsupervised discovery of object classes from range data using latent dirichlet allocation. In: Proc. of Robotics: Science and Systems (2009)

    Google Scholar 

  17. Bo, L., Ren, X., Fox, D.: Depth Kernel Descriptors for Object Recognition. In: IROS (September 2011)

    Google Scholar 

  18. Wahl, E., Hillenbrand, U., Hirzinger, G.: Surflet-pair-relation histograms: A statistical 3D-shape representation for rapid classification. In: 3-D Digital Imaging and Modeling, pp. 474–481 (2003)

    Google Scholar 

  19. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: Proc. of Int. Conference on Robotics and Automation (ICRA), Shanghai, China (2011)

    Google Scholar 

  20. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  21. Marton, Z.C., Rusu, R.B., Jain, D., Klank, U., Beetz, M.: Probabilistic Categorization of Kitchen Objects in Table Settings with a Composite Sensor. In: Proc. of the Int. Conf. on Intelligent Robots and Systems, St. Louis, MO, USA (2009)

    Google Scholar 

  22. Collet Romea, A., Srinivasa, S., Hebert, M.: Structure discovery in multi-modal data: a region-based approach. In: Proceedings of ICRA (2011)

    Google Scholar 

  23. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  24. Burges, C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  25. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Annals of Statistics 28, 2000 (1998)

    MathSciNet  Google Scholar 

  26. Mozos, O.M., Burgard, W.: Supervised learning of topological maps using semantic information extracted from range data. In: IROS, pp. 2772–2777 (2006)

    Google Scholar 

  27. Browatzki, B., Fischer, J., Graf, B., Bülthoff, H., Wallraven, C.: Going into depth: Evaluating 2D and 3D cues for object classification on a new, large-scale object dataset. In: Proc. of Int. Conf. Computer Vision Workshop on CD4CV, pp. 1–7 (2011)

    Google Scholar 

  28. Bradski, G., Kaehler, A.: Learning opencv: Computer vision with the opencv library (2008)

    Google Scholar 

  29. Chang, C., Lin, C.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bormann, R., Fischer, J., Arbeiter, G., Verl, A. (2012). Efficient Object Categorization with the Surface-Approximation Polynomials Descriptor. In: Stachniss, C., Schill, K., Uttal, D. (eds) Spatial Cognition VIII. Spatial Cognition 2012. Lecture Notes in Computer Science(), vol 7463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32732-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32732-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32731-5

  • Online ISBN: 978-3-642-32732-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics