Hierarchical Planning for Self-reconfiguring Robots Using Module Kinematics

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 83)

Abstract

Reconfiguration allows a self-reconfiguring modular robot to adapt to its environment. The reconfiguration planning problem is one of the key algorithmic challenges in realizing self-reconfiguration. Many existing successful approaches rely on grouping modules together to act as meta-modules. However, we are interested in reconfiguration planning that does not impose fixed meta-module relationships but instead forms cooperative relationships between modules dynamically. This approach avoids the need to hand-code meta-module motions and potentially allows reconfiguration with fewer modules. In this paper we present a general two level reconfiguration framework. The top level plans in module-connector space using distributed dynamic programming. The lower level accepts a transition function for the kinematic model of the chosen module type as input. As an example, we implement such a transition function for the 3R, SuperBot-style module. Although not explored in this paper, this general approach is naturally extended to consider power use, clock time, or other quantities of interest.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asadpour, M., Sproewitz, A., Billard, A., Dillenbourg, P., Ijspeert, A.J.: Graph signature for self-reconfiguration planning. In: Proc. of the IEEE/RSJ IROS, pp. 863–869 (2008)Google Scholar
  2. 2.
    Barto, A., Mahadevan, S.: Recent advances in hiearchical reinforcement learning. Special Issue on Reinforcement Learning, Discrete Event Systems Journal 13, 41–77 (2003)MathSciNetMATHGoogle Scholar
  3. 3.
    Butler, Z., Kotay, K., Rus, D., Tomita, K.: Generic decentralized locomotion control for lattice-based self-reconfigurable robots. Int. J. Rob. Res. 23(9) (2004)Google Scholar
  4. 4.
    Butler, Z., Rus, D.: Distributed motion planning for modular robots with unit-compressible modules. Int. J. Rob. Res. 22(9), 699–716 (2003)CrossRefGoogle Scholar
  5. 5.
    Chiang, C.H., Chirikjian, G.: Modular robot motion planning using similarity metrics. Autonomous Robots 10(1), 91–106 (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Christensen, D., Stoy, K.: Selecting a meta-module to shape-change the atron self-reconfigurable robot. In: Proc. of IEEE ICRA, pp. 2532–2538 (2006)Google Scholar
  7. 7.
    Fitch, R.: Heterogeneous self-reconfiguring robotics. Ph.D. thesis, Dartmouth College (2004)Google Scholar
  8. 8.
    Fitch, R., Alempijevic, A., Lal, R.: A self-reconfiguring team of mobile robots. In: Proc. of IEEE ICRA, Workshop on Network Science and Systems in Multi-Robot Autonomy (2010)Google Scholar
  9. 9.
    Fitch, R., Butler, Z.: Million module march: Scalable locomotion for large self-reconfiguring robots. Int. J. Rob. Res. 27(3-4), 331–343 (2008)CrossRefGoogle Scholar
  10. 10.
    Fitch, R., Lal, R.: Experiments with a ZigBee wireless communication system for self-reconfiguring modular robots. In: Proc. of IEEE ICRA, pp. 1947–1952 (2009)Google Scholar
  11. 11.
    Hou, F., Shen, W.M.: Distributed, dynamic, and autonomous reconfiguration planning for chain-type self-reconfigurable robots. In: Proc. of IEEE ICRA (2008)Google Scholar
  12. 12.
    Hou, F., Shen, W.M.: On the complexity of optimal reconfiguration planning for modular reconfigurable robots. In: Proc. of IEEE ICRA (2010)Google Scholar
  13. 13.
    Itzstein, B.: Assembly order planning for stable self-reconfiguration of modular robots. Undergraduate thesis, The University of Sydney (2009)Google Scholar
  14. 14.
    Kotay, K., Rus, D.: Algorithms for self-reconfiguring molecule motion planning. In: Proc. of the IEEE/RSJ IROS (2000)Google Scholar
  15. 15.
    Lal, R., Fitch, R.: A hardware-in-the-loop simulator for distributed robotics. In: Proc. of ARAA Australasian Conference on Robotics and Automation, ACRA (2009)Google Scholar
  16. 16.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)MATHCrossRefGoogle Scholar
  17. 17.
    Littman, M.L., Dean, T.L., Kaelbling, L.P.: On the complexity of solving markov decision problems. In: Proc. of UAI, pp. 394–402 (1995)Google Scholar
  18. 18.
    Pamecha, A., Ebert-Uphoff, I., Chirikjian, G.: Useful metrics for modular robot motion planning. IEEE Trans. on Robotics and Automation 13(4), 531–545 (1997)CrossRefGoogle Scholar
  19. 19.
    Prevas, K.C., Unsal, C., Efe, M.O., Khosla, P.K.: A hierarchical motion planning strategy for a uniform self-reconfigurable modular robotic system. In: Proc. of IEEE ICRA (2002)Google Scholar
  20. 20.
    Fitch, R., Rus, D.: Self-reconfiguring robots in the USA. Journal of the Robotics Society of Japan 21(8), 4–10 (2003)CrossRefGoogle Scholar
  21. 21.
    Salemi, B., Moll, M., Shen, W.M.: SUPERBOT: A deployable, multi-functional, and modular self-reconfigurable robotic system. In: Proc. of IEEE/RSJ IROS (2006)Google Scholar
  22. 22.
    Stoy, K.: Controlling self-reconfiguration using cellular automata and gradients. In: Proceedings of IAS-8 (2004)Google Scholar
  23. 23.
    Stoy, K., Nagpal, R.: Self-reconfiguration using directed growth. In: 7th International Symposium on Distributed Autonomous Robotic Systems, DARS 2004 (2004)Google Scholar
  24. 24.
    Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)Google Scholar
  25. 25.
    Vassilvitskii, S., Yim, M., Suh, J.: A complete, local and parallel reconfiguration algorithm for cube style modular robots. In: Proc. of IEEE ICRA, pp. 117–122 (2002)Google Scholar
  26. 26.
    Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.: Modular self-reconfigurable robot systems. IEEE Robot. Automat. Mag. 14(1), 43–52 (2007)CrossRefGoogle Scholar
  27. 27.
    Yoshida, E., Matura, S., Kamimura, A., Tomita, K., Kurokawa, H., Kokaji, S.: A Self-Reconfigurable Modular Robot: Reconfiguration Planning and Experiments. Int. J. Rob. Res., 903–915 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Australian Centre for Field Robotics (ACFR), ARC Centre of Excellence for Autonomous SystemsThe University of SydneySydneyAustralia

Personalised recommendations