Optimal Reciprocal Collision Avoidance for Multiple Non-Holonomic Robots

  • Javier Alonso-Mora
  • Andreas Breitenmoser
  • Martin Rufli
  • Paul Beardsley
  • Roland Siegwart
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 83)


In this paper an optimalmethod for distributed collision avoidance among multiple non-holonomic robots is presented in theory and experiments. Non-holonomic optimal reciprocal collision avoidance (NH-ORCA) builds on the concepts introduced in [2], but further guarantees smooth and collision-free motions under non-holonomic constraints. Optimal control inputs and constraints in velocity space are formally derived for the non-holonomic robots. The theoretical results are validated in several collision avoidance experiments with up to fourteen e-puck robots set on collision course. Even in scenarios with very crowded situations, NH-ORCA showed to be collision-free for all times.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balkcom, D.J., Mason, M.T.: Time Optimal Trajectories for Bounded Velocity Differential Drive Vehicles. Int. J. Robot. Res. 21(3), 199–218 (2002)CrossRefGoogle Scholar
  2. 2.
    van den Berg, J., Guy, S.J., Lin, M.C., Manocha, D.: Reciprocal n-body Collision Avoidance. In: Proc. Int. Symp. Robot. Res. (2009)Google Scholar
  3. 3.
    van den Berg, J., Lin, M.C., Manocha, D.: Reciprocal Velocity Obstacles for real-time multi-agent navigation. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1928–1935 (2008)Google Scholar
  4. 4.
    Borenstein, J., Koren, Y.: The vector field histogram - fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. (7), 278–288 (1991)Google Scholar
  5. 5.
    Chang, D.E., Shadden, S., Marsden, J.E., Olfati Saber, R.: Collision Avoidance for Multiple Agent Systems. In: Proc. IEEE Conf. Dec. Contr. (2003)Google Scholar
  6. 6.
    Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)CrossRefGoogle Scholar
  7. 7.
    Guy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey, P.: ClearPath: Highly Parallel Collision Avoidance for Multi-Agent Simulation. In: Proc. ACM SIGGRAPH Eurographics Symp. Comput. Animat. (2009)Google Scholar
  8. 8.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. (5), 90–98 (1986)Google Scholar
  9. 9.
    Lalish, E., Morgansen, K.A.: Decentralized Reactive Collision Avoidance for Multivehicle Systems. In: Proc. IEEE Conf. Decision and Control (2008)Google Scholar
  10. 10.
    Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.-C., Floreano, D., Martinoli, A.: The e-puck, a Robot Designed for Education in Engineering. In: Proc. Conf. Aut. Rob. Syst. Compet., pp. 59–65 (2009)Google Scholar
  11. 11.
    Siméon, T., Leroy, S., Laumond, J.-P.: Path coordination for multiple mobile robots: a resolution complete algorithm. IEEE Trans. Robot. Autom. 18(1) (2002)Google Scholar
  12. 12.
    Snape, J., van den Berg, J., Guy, S.J., Manocha, D.: Independent navigation of multiple mobile robots with hybrid reciprocal velocity obstacles. In: Proc. IEEE Int. Conf. Intell. Rob. Syst., pp. 5917–5922 (2009)Google Scholar
  13. 13.
    Snape, J., van den Berg, J., Guy, S.J., Manocha, D.: S-ORCA: Guaranteeing Smooth and Collision-Free Multi-Robot Navigation Under Differential-Drive Constraints. In: Proc. IEEE Int. Conf. Robot. Autom. (2010)Google Scholar
  14. 14.
    Stipanović, D.M., Hokayem, P.F., Spong, M.W., Šiljak, D.D.: Cooperative Avoidance Control for Multiagent Systems. ASME J. Dyn. Sys. Meas. Control 129(5), 699–707 (2007)CrossRefGoogle Scholar
  15. 15.
    Wilkie, D., van den Berg, J., Manocha, D.: Generalized velocity obstacles. In: Proc. IEEE Int. Conf. Intell. Rob. Syst., pp. 5573–5578 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Javier Alonso-Mora
    • 1
    • 2
  • Andreas Breitenmoser
    • 1
  • Martin Rufli
    • 1
  • Paul Beardsley
    • 2
  • Roland Siegwart
    • 1
  1. 1.Autonomous Systems Laboratory (ASL)ETH ZurichZurichSwitzerland
  2. 2.Disney Research ZurichZurichSwitzerland

Personalised recommendations