Skip to main content

A TV-L1 Optical Flow Method with Occlusion Detection

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 7476)

Abstract

In this paper we propose a variational model for joint optical flow and occlusion estimation. Our work stems from the optical flow method based on a TV-L 1 approach and incorporates information that allows to detect occlusions. This information is based on the divergence of the flow and the proposed energy favors the location of occlusions on regions where this divergence is negative. Assuming that occluded pixels are visible in the previous frame, the optical flow on non-occluded pixels is forward estimated whereas is backwards estimated on the occluded ones. We display some experiments showing that the proposed model is able to properly estimate both the optical flow and the occluded regions.

Keywords

  • Optical Flow
  • Consecutive Frame
  • Occlude Region
  • Intensity Match
  • Occlusion Area

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-32717-9_4
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-32717-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L., Deriche, R., Papadopoulo, T., Sanchez, J.: Symmetrical dense optical flow estimation with occlusions detection. International Journal of Computer Vision 75(3), 371–385 (2007)

    CrossRef  Google Scholar 

  2. Black, M., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding 63(1), 75–104 (1996)

    CrossRef  Google Scholar 

  3. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High Accuracy Optical Flow Estimation Based on a Theory for Warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004, Part IV. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  4. Bruhn, A.: Variational optic flow computation: Accurate modeling and efficient numerics. Ph.D. thesis, Department of Mathematics and Computer Science, Saarland University (2006)

    Google Scholar 

  5. Chambolle, A.: An algorithm for total variation minimization and applications. Mathematical Imaging and Vision 20(1), 89–97 (2004)

    CrossRef  MathSciNet  Google Scholar 

  6. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)

    CrossRef  MathSciNet  Google Scholar 

  7. Horn, B., Schunk, B.: Determining optical flow. Artificial Intelligence 20 (1981)

    Google Scholar 

  8. Ince, S., Konrad, J.: Occlusion-aware optical flow estimation. IEEE Trans. Image Processing 17(8), 1443–1451 (2008)

    CrossRef  MathSciNet  Google Scholar 

  9. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(5), 565–593 (1986)

    CrossRef  Google Scholar 

  10. Sánchez, J., Meinhardt-Llopis, E., Facciolo, G.: TV-L1 optical flow estimation. Image Processing Online (January 2012), http://www.ipol.im

  11. Sand, P., Teller, S.: Particle video: Long-range motion estimation using point trajectories. International Journal of Computer Vision 80(1), 72–91 (2008)

    CrossRef  Google Scholar 

  12. Sun, D., Sudderth, E.B., Black, M.J.: Layered image motion with explicit occlusions, temporal consistency, and depth ordering. In: Advances in Neural Information Processing Systems, pp. 2226–2234 (2010)

    Google Scholar 

  13. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: CVPR (2010)

    Google Scholar 

  14. Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(3), 365–380 (2002)

    CrossRef  Google Scholar 

  15. Thompson, W.B., Mutch, K.M., Berzins, V.A.: Dynamic occlusion analysis in optical flow fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 7(4), 374–383 (1985)

    CrossRef  Google Scholar 

  16. Wang, J.Y.A., Adelson, E.H.: Representing moving images with layers. IEEE Transactions on Image Processing 3(5), 625–638 (1994)

    CrossRef  Google Scholar 

  17. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An Improved Algorithm for TV-L 1 Optical Flow. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds.) Visual Motion Analysis 2008. LNCS, vol. 5604, pp. 23–45. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  18. Xiao, J., Cheng, H., Sawhney, H.S., Rao, C., Isnardi, M.: Bilateral Filtering-Based Optical Flow Estimation with Occlusion Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 211–224. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  19. Zach, C., Pock, T., Bischof, H.: A Duality Based Approach for Realtime TV-L 1 Optical Flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ballester, C., Garrido, L., Lazcano, V., Caselles, V. (2012). A TV-L1 Optical Flow Method with Occlusion Detection. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds) Pattern Recognition. DAGM/OAGM 2012. Lecture Notes in Computer Science, vol 7476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32717-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32717-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32716-2

  • Online ISBN: 978-3-642-32717-9

  • eBook Packages: Computer ScienceComputer Science (R0)