Skip to main content

Comparison of Ant-Inspired Gatherer Allocation Approaches Using Memristor-Based Environmental Models

  • Conference paper
Bio-Inspired Models of Networks, Information, and Computing Systems (BIONETICS 2011)

Abstract

Memristors are used to compare three gathering techniques in an already-mapped environment where resource locations are known. The All Site model, which apportions gatherers based on the modeled memristance of that path, proves to be good at increasing overall efficiency and decreasing time to fully deplete an environment, however it only works well when the resources are of similar quality. The Leafcutter method, based on Leafcutter ant behaviour, assigns all gatherers first to the best resource, and once depleted, uses the All Site model to spread them out amongst the rest. The Leafcutter model is better at increasing resource influx in the short-term and vastly out-performs the All Site model in a more varied environments. It is demonstrated that memristor based abstractions of gatherer models provide potential methods for both the comparison and implementation of agent controls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chua, L.O.: Memristor — The Missing Circuit Element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The Missing Memristor Found. Nature 453, 80–83

    Google Scholar 

  3. Bernabé, L.-B., Teresa, S.-G.: Memristance can explain Spike-Time-Dependent-Plasticity in Neural Synapses. Available from Nature Precedings (2009), http://hdl.handle.net/10101/npre.2009.3010.1

  4. Mullins, J.: Memristor minds: The future of artificial intelligence. New Scientist, 2715

    Google Scholar 

  5. Chua, L.O., Kang, S.M.: Memristive Devices and Systems. PIEEE 64, 209–223 (1976)

    MathSciNet  Google Scholar 

  6. Howard, D., Gale, E., Bull, L., De Lacy Costello, B., Adamatzky, A.: Evolving Spiking Networks with Variable Memristors. In: GECCO 2011: Proceedings of the Genetic and Evolutionary Computation Conference. ACM Press (2011)

    Google Scholar 

  7. Howard, D., Gale, E., Bull, L., De Lacy Costello, B., Adamatzky, A.: Towards Evolving Spiking Networks with Memristive Synapses. In: Proceedings of the IEEE Symposium on Artificial Life. IEEE (2011)

    Google Scholar 

  8. Zamarreno-Ramos, C., Camunas-Mesa, L.A., Perez-Carrasco, J.A., Masquelier, T., Serrano-Gotarredona, T., Linares-Barranco, B.: On spike-timing-dependent-plasticity memristive devices, and building a self-learning visual cortex. Frontiers in Neuroscience 5, 26.1–26.22 (2011)

    Google Scholar 

  9. Pershin, Y., Di Ventra, M.: Solving mazes with memristors: a massively-parallel approach. Available from Nature Precedings (2011), http://dx.doi.org/10.1038/npre.2011.5748.1

  10. Tarassenko, L., Blake, A.: Analogue Computation of Collision-free paths. In: Proc. IEEE: International Conference on Robotica and Automation, pp. 540–545 (1991)

    Google Scholar 

  11. Marshall, G.F., Tarassenko, L.: Robot path planning using resistive grids

    Google Scholar 

  12. Lubbock, J.: Observations on Ants, Bees, and Wasps; with a Description of a new Species of Honey-Ant. Part VII. Ants. Journal of the Linnean Society of London, Zoology 15, 167–187 (1880)

    Article  Google Scholar 

  13. Wilson, E.O.: Behavior of Daceton armigerum (Latreille), with a classification of self-grooming movements in ants. Bulletin of the Museum of Comparative Zoology of Harvard College 127, 403–421 (1962)

    Google Scholar 

  14. Jackson, D.E., Martin, S.J., Ratnieks, F.L.W., Holcombe, M.: Spatial and temporal variation in pheremone composition of ant foraging trails. Behavioral Ecology 18, 444–450 (2007)

    Article  Google Scholar 

  15. Jackson, D.E., Martin, S.J., Holcombe, M., Ratnieks, F.L.W.: Longevity and detection of persistent foraging trails in Pharaoh’s ants, Monomorium pharaonis (L.). Animal Behaviour 71, 351–359 (2006)

    Article  Google Scholar 

  16. Robinson, E.J.H., Jackson, D.E., Holcombe, M., Ratnieks, F.L.W.: ‘No entry’ signal in ant foraging. Nature 438, 442 (2005)

    Article  Google Scholar 

  17. Sumpter, D.J.T.: The principles of collective animal behaviour. Phil. Trans. R. Soc. B 361, 5–22 (2006)

    Article  Google Scholar 

  18. Jackson, D.E., Holcombe, M., Ratnieks, F.L.W.: Trail geometry gives polarity to ant foraging networks. Nature 432, 907–909 (2004)

    Article  Google Scholar 

  19. Dorigo, M.M., Colorni, A.: Ant System: Optimization by a colony of cooperating agents. IEEE Trans. Sys. Man and Cybernetics B 26, 29–41 (1996)

    Article  Google Scholar 

  20. Dorigo, M., Di Caro, G.: The Ant Colony Metaheuristic. In: New Ideas in Optimization, pp. 11–32 (1999)

    Google Scholar 

  21. Dorigo, M., Di Caro, G., Gambardella, M.: Ant algorithms for discrete optimization. Artificial Life 5, 137–172 (1999)

    Article  Google Scholar 

  22. Stutzle, T., Hoos, H.H.: Max-min ant system. Future Generation Computer Systems 16, 889–914 (2000)

    Article  MATH  Google Scholar 

  23. Bullnheimer, B., Hartl, R.F., Strauss, C.: A new rank-based version of hte Ant system: A computational study. Central European Journal for Operations Research and Economics 7, 25–38 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Mullen, R.J., Monekosson, D., Barman, S., Remagnino, P.: Expert Systems and Applications 36, 9608–9617 (2009)

    Article  Google Scholar 

  25. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem. BioSystems 43, 73–81 (1997)

    Article  Google Scholar 

  26. Traniello, J.F.A.: Foraging Strategies of Ants. Ann. Rev. Entomol. 34, 191–210 (1989)

    Article  Google Scholar 

  27. Taylor, F.: Foraging behavior in ants: experiments with two species of myrmecine ants. Behav. Ecol. Socio-biol. 2, 147–168 (1978)

    Article  Google Scholar 

  28. Rockwood, L., Hubell, S.P.: Host-plant selection, diet diversity and optimal foraging in a tropical leafcutting ant. Oecologia 74, 55–61 (1987)

    Article  Google Scholar 

  29. Gordon, D.M.: Ants at Work: how an insect society is organized. Free Press, Simon and Schuster (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Gale, E., de Lacy Costello, B., Adamatzky, A. (2012). Comparison of Ant-Inspired Gatherer Allocation Approaches Using Memristor-Based Environmental Models. In: Hart, E., Timmis, J., Mitchell, P., Nakamo, T., Dabiri, F. (eds) Bio-Inspired Models of Networks, Information, and Computing Systems. BIONETICS 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32711-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32711-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32710-0

  • Online ISBN: 978-3-642-32711-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics