Channel Design and Optimization of Active Transport Molecular Communication

  • Nariman Farsad
  • Andrew W. Eckford
  • Satoshi Hiyama
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 103)

Abstract

In this paper, a guideline is provided for design and optimization of the shape of active transport molecular communication channels. In particular rectangular channels are considered and it is shown that for channels employing a single microtubule as the carrier of the information particles, the smaller the perimeter of the channel, the higher the channel capacity. Furthermore, it is shown that when channels with similar perimeters are considered, square-like channels achieve higher channel capacity for small values of time per channel use, while narrower channels achieve higher information rates for larger values of time per channel use.

Keywords

Molecular communication microchannels information theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hiyama, S., Moritani, Y.: Molecular communication: harnessing biochemical materials to engineer biomimetic communication systems. Nano Communication Networks 1(1), 20–30 (2010)CrossRefGoogle Scholar
  2. 2.
    Farsad, N., Eckford, A.W., Hiyama, S., Moritani, Y.: Information rates of active propagation in microchannel molecular communication. In: Proc. of the 5th International ICST Conference on Bio-Inspired Models of Network, Information, and Computing Systems, Boston, MA, p. 7 (2010)Google Scholar
  3. 3.
    Farsad, N., Eckford, A.W., Hiyama, S., Moritani, Y.: A simple mathematical model for information rate of active transport molecular communication. In: Proc. IEEE INFOCOM Workshops, Shanghai, P. R. China, pp. 473–478 (2011)Google Scholar
  4. 4.
    Farsad, N., Eckford, A.W., Hiyama, S., Moritani, Y.: Quick system design of vesicle-based active transport molecular communication by using a simple transport model. Nano Communication Networks (2011), doi:10.1016/j.nancom.2011.07.003Google Scholar
  5. 5.
    Eckford, A.W.: Nanoscale communication with brownian motion. In: Proc. of the 41st Annual Conference on Information Sciences and Systems, Baltimore, MD, pp. 160–165 (2007)Google Scholar
  6. 6.
    Atakan, B., Akan, O.: An information theoretical approach for molecular communication. In: Proc. of the 2nd International Conference on Bio-Inspired Models of Network, Information and Computing Systems, Budapest, Hungary, pp. 33–40 (2007)Google Scholar
  7. 7.
    Moore, M.J., Suda, T., Oiwa, K.: Molecular communication: modeling noise effects on information rate. IEEE Transactions on NanoBioscience 8(2), 169–180 (2009)CrossRefGoogle Scholar
  8. 8.
    Eckford, A.W.: Timing Information Rates for Active Transport Molecular Communication. In: Schmid, A., Goel, S., Wang, W., Beiu, V., Carrara, S. (eds.) Nano-Net 2009. LNICST, vol. 20, pp. 24–28. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Pierobon, M., Akyildiz, I.F.: A physical end-to-end model for molecular communication in nanonetworks. IEEE Journal on Selected Areas in Communications 28(4), 602–611 (2010)CrossRefGoogle Scholar
  10. 10.
    Mahfuz, M.U., Makrakis, D., Mouftah, H.T.: On the characterization of binary concentration-encoded molecular communication in nanonetworks. Nano Communication Networks 1(4), 289–300 (2010)CrossRefGoogle Scholar
  11. 11.
    Eckford, A.W., Farsad, N., Hiyama, S., Moritani, Y.: Microchannel molecular communication with nanoscale carriers: Brownian motion versus active transport. In: Proc. of the IEEE International Conference on Nanotechnology, Seoul, South Korea, pp. 854–858 (2010)Google Scholar
  12. 12.
    Nitta, T., Tanahashi, A., Hirano, M., Hess, H.: Simulating molecular shuttle movements: Towards computer-aided design of nanoscale transport systems. Lab on a Chip 6(7), 881–885 (2006)CrossRefGoogle Scholar
  13. 13.
    Nitta, T., Tanahashi, A., Hirano, M.: In silico design and testing of guiding tracks for molecular shuttles powered by kinesin motors. Lab on a Chip 10(11), 1447–1453 (2010)CrossRefGoogle Scholar
  14. 14.
    Hiyama, S., Gojo, R., Shima, T., Takeuchi, S., Sutoh, K.: Biomolecular-motor-based nano- or microscale particle translocations on DNA microarrays. Nano Letters 9(6), 2407–2413 (2009)CrossRefGoogle Scholar
  15. 15.
    Hiyama, S., Moritani, Y., Gojo, R., Takeuchi, S., Sutoh, K.: Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip. Lab on a Chip 10(20), 2741–2748 (2010)CrossRefGoogle Scholar
  16. 16.
    Cobo, L.C., Akyildiz, I.F.: Bacteria-based communication in nanonetworks. Nano Communication Networks 1(4), 244–256 (2010)CrossRefGoogle Scholar
  17. 17.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-Interscience (2006)Google Scholar
  18. 18.
    Blahut, R.: Computation of channel capacity and rate-distortion functions. IEEE Transactions on Information Theory 18(4), 460–473 (1972)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Arimoto, S.: An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE Transactions on Information Theory 18(1), 14–20 (1972)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Nariman Farsad
    • 1
  • Andrew W. Eckford
    • 1
  • Satoshi Hiyama
    • 2
  1. 1.Dept. of Computer Science and EngineeringYork UniversityTorontoCanada
  2. 2.Research LaboratoriesNTT DOCOMO Inc.YokosukaJapan

Personalised recommendations