Skip to main content

Probabilistic Reasoning in DL-Lite

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7458)

Abstract

The problem of extending description logics with uncertainty has received significant attention in recent years. In this paper, we investigate a probabilistic extension of DL-Lite, a family of tractable description logics. We first present a new probabilistic semantics for terminological knowledge bases based on the notion of types. The semantics proposed is not capable of handling assertional knowledge. In order to reason with both terminological and assertional probabilistic knowledge, we propose a probabilistic semantics based on a finite semantics for DL-Lite called features. This approach enables us to infer new information from the existing knowledge base by drawing on the inherent relation between a probabilistic TBox and a probabilistic ABox.

Keywords

  • Description logics
  • Probabilistic reasoning
  • Nonmonotonic reasoning
  • DL-Lite

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-32695-0_43
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-32695-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   143.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-lite in the light of first-order logic. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, AAAI 2007, pp. 361–366 (2007)

    Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)

    Google Scholar 

  3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-lite: Tractable description logics for ontologies. In: Proceedings of the 20th AAAI Conference on Artificial Intelligence, AAAI 2005, pp. 602–607 (2005)

    Google Scholar 

  4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-lite family. Journal of Automated Reasoning 39(3), 385–429 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Paulo, C.G.: Costa. Bayesian Semantics for the Semantic Web. PhD Thesis, George Mason University, Fairfax, VA, USA (2005)

    Google Scholar 

  6. Costa, P.C.G., Laskey, K.B.: Pr-owl: A framework for probabilistic ontologies. In: Proceedings of the 4th Conference on Formal Ontologies in Information Systems, FOIS 2006, pp. 237–249 (2006)

    Google Scholar 

  7. Goldszmidt, M., Pearl, J.: On the consistency of defeasible databases. Artificial Intelligence 52, 121–149 (1991)

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Heinsohn, J.: Probabilistic description logics. In: Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence, UAI 1994, pp. 311–318 (1994)

    Google Scholar 

  9. Jaeger, M.: Probabilistic reasoning in terminological logics. In: Proceedings of the 5th International Conference on Principles of Knowledge Representation and Reasoning, KR 1994, pp. 305–316 (1994)

    Google Scholar 

  10. Koller, D., Levy, A., Pfeffer, A.: P-classic: A tractable probabilistic description logic. In: Proceedings of the 14th AAAI Conference on Artificial Intelligence, AAAI 1997, pp. 390–397 (1997)

    Google Scholar 

  11. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Can you tell the difference between DL-lite ontologies? In: Proceedings of the 11th International Conference on Principles of Knowledge Representation and Reasoningm, KR 2008, pp. 285–295 (2008)

    Google Scholar 

  12. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

    MathSciNet  MATH  CrossRef  Google Scholar 

  13. Lehmann, D.J.: Another perspective on default reasoning. Annals of Mathematics and Artificial Intelligence 15(1), 61–82 (1995)

    MathSciNet  MATH  CrossRef  Google Scholar 

  14. Liu, H., Lutz, C., Miličić, M., Wolter, F.: Foundations of instance level updates in expressive description logics. Artificial Intelligence 175(18), 2170–2197 (2011)

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Lukasiewicz, T.: Probabilistic logic programming under inheritance with overriding. In: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, UAI 2001, pp. 329–336 (2001)

    Google Scholar 

  16. Lukasiewicz, T.: Probabilistic default reasoning with conditional constraints. Annals of Mathematics and Artificial Intelligence 34(1-3), 35–88 (2002)

    MathSciNet  MATH  CrossRef  Google Scholar 

  17. Lukasiewicz, T.: Probabilistic Lexicographic Entailment under Variable-Strength Inheritance with Overriding. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 576–587. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  18. Lukasiewicz, T.: Expressive probabilistic description logics. Artificial Intelligence 172(6-7), 852–883 (2008)

    MathSciNet  MATH  CrossRef  Google Scholar 

  19. Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty. In: Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning, KR 2010. AAAI Press (2010)

    Google Scholar 

  20. Sebastiani, F.: A probabilistic terminological logic for modelling information retrieval. In: Proceedings of the 17th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1994, pp. 122–130 (1994)

    Google Scholar 

  21. Udrea, O., Yu, D., Hung, E., Subrahmanian, V.S.: Probabilistic Ontologies and Relational Databases. In: Meersman, R. (ed.) OTM 2005. LNCS, vol. 3760, pp. 1–17. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  22. Wang, Z., Wang, K., Topor, R.W.: A new approach to knowledge base revision in DL-lite. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI 2010, pp. 369–374 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramachandran, R., Qi, G., Wang, K., Wang, J., Thornton, J. (2012). Probabilistic Reasoning in DL-Lite. In: Anthony, P., Ishizuka, M., Lukose, D. (eds) PRICAI 2012: Trends in Artificial Intelligence. PRICAI 2012. Lecture Notes in Computer Science(), vol 7458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32695-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32695-0_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32694-3

  • Online ISBN: 978-3-642-32695-0

  • eBook Packages: Computer ScienceComputer Science (R0)