Using \(\mathcal{SOIQ}\)(D) to Formalize Semantics within a Semantic Decision Table

  • Yan Tang Demey
  • Trung-Kien Tran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7438)


As an extension to decision tables, Semantic Decision Tables (SDTs) are considered as a powerful tool of modeling processes in various domains. An important motivation of consuming SDTs is to easily validate a decision table during the Validation and Verification (V&V) processes. An SDT contains a set of formal agreements called commitments. They are grounded on a domain ontology and considered as a result from group decision making processes, which involve a community of business stakeholders. A commitment contains a set of constraints, such as uniqueness and mandatory, with which we can analyze a decision table. A vital analysis issue is to detect inconsistency, which can arise within one table or across tables. In this paper, we focus on the formalization of the semantics within one SDT using the Description Logic \(\mathcal{SOIQ}\)(D). By doing so, we can use existing reasoners to detect inconsistency and thus assist decision modelers (and evaluators) to validate a decision table.


Semantic Decision Table Conceptual Modeling Description Logics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press (2007)Google Scholar
  2. 2.
    Boley, H., Tabet, S., Wagner, G.: Design rationale for ruleml: A markup language for semantic web rules. In: Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L. (eds.) SWWS, pp. 381–401 (2001)Google Scholar
  3. 3.
    CSA. Z243.1-1970 for decision tables, canadian standards association (1970)Google Scholar
  4. 4.
    Halpin, T.A.: A Logical Analysis of Information Systems: Static Aspects of the Data-oriented Perspective. PhD thesis, University of Queensland, Autralia (1989)Google Scholar
  5. 5.
    Halpin, T.A., Morgan, T.: Information modeling and relational databases, 2nd edn. Morgan Kaufmann (2008)Google Scholar
  6. 6.
    Henry Beitz, E., Marselos, N., et al.: A modern appraisal of decision tables, a Codasyl report. ACM, New York (1982)Google Scholar
  7. 7.
    Hewett, R., Leuchner, J.H.: Restructuring decision tables for elucidation of knowledge. Data Knowl. Eng. 46(3), 271–290 (2003)CrossRefGoogle Scholar
  8. 8.
    Ibramsha, M., Rajaraman, V.: Detection of logical errors in decition table programs. Commun. ACM 21(12), 1016–1025 (1978)zbMATHCrossRefGoogle Scholar
  9. 9.
    Jarrar, M.: Mapping ORM into the SHOIN/OWL Description Logic. In: Meersman, R., Tari, Z. (eds.) OTM-WS 2007, Part I. LNCS, vol. 4805, pp. 729–741. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Jarrar, M.: Towards Automated Reasoning on ORM Schemes. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 181–197. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Lew, A.: Optimal conversion of extended-entry decision tables with general cost criteria. Commun. ACM 21(4), 269–279 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Motik, B., Horrocks, I.: OWL Datatypes: Design and Implementation. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 307–322. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Pooch, U.W.: Translation of decision tables. ACM Comput. Surv. 6(2), 125–151 (1974)CrossRefGoogle Scholar
  14. 14.
    Qian, Y., Liang, J., Li, D., Wang, F., Ma, N.: Approximation reduction in inconsistent incomplete decision tables. Knowl.-Based Syst. 23(5), 427–433 (2010)CrossRefGoogle Scholar
  15. 15.
    Shwayder, K.: Combining decision rules in a decision table. Commun. ACM 18(8), 476–480 (1975)zbMATHCrossRefGoogle Scholar
  16. 16.
    Tang, Y.: Towards Using Semantic Decision Tables for Organizing Data Semantics. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6428, pp. 494–503. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Tang, Y.: Directly Applied ORM Constraints for Validating and Verifying Semantic Decision Tables. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM-WS 2011. LNCS, vol. 7046, pp. 350–359. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Tang, Y., Meersman, R.: Use Semantic Decision Tables to Improve Meaning Evolution Support Systems. In: Sandnes, F.E., Zhang, Y., Rong, C., Yang, L.T., Ma, J. (eds.) UIC 2008. LNCS, vol. 5061, pp. 169–186. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Tang, Y., Meersman, R.: SDRule Markup Language: Towards Modeling and Interchanging Ontological Commitments for Semantic Decision Making. In: Handbook of Research on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches. IGI Publishing, USA (2009) ISBN: 1-60566-402-2Google Scholar
  20. 20.
    Tang, Y., Meersman, R.: Towards Directly Applied Ontological Constraints in a Semantic Decision Table. In: Palmirani, M. (ed.) RuleML - America 2011. LNCS, vol. 7018, pp. 193–207. Springer, Heidelberg (2011)Google Scholar
  21. 21.
    Tang, Y., Meersman, R., Demey, J.: A self-configuring semantic decision table for parameterizing an ontology-based data matching strategy. In: RCIS, pp. 1–9. IEEE (2011)Google Scholar
  22. 22.
    Vanthienen, J., Mues, C., Aerts, A.: An illustration of verification and validation in the modelling phase of kbs development. Data Knowl. Eng. 27(3), 337–352 (1998)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yan Tang Demey
    • 1
  • Trung-Kien Tran
    • 1
  1. 1.STARLab, Department of Computer ScienceVrije Universiteit BrusselBelgium

Personalised recommendations