Verified Computation with Probabilities

  • Scott Ferson
  • Jack Siegrist
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 377)

Abstract

Because machine calculations are prone to errors that can sometimes accumulate disastrously, computer scientists use special strategies called verified computation to ensure output is reliable. Such strategies are needed for computing with probability distributions. In probabilistic calculations, analysts have routinely assumed (i) probabilities and probability distributions are precisely specified, (ii) most or all variables are independent or otherwise have well-known dependence, and (iii) model structure is known perfectly. These assumptions are usually made for mathematical convenience, rather than with empirical justification, even in sophisticated applications. Probability bounds analysis computes bounds guaranteed to enclose probabilities and probability distributions even when these assumptions are relaxed or removed. In many cases, results are best-possible bounds, i.e., tightening them requires additional empirical information. This paper presents an overview of probability bounds analysis as a computationally practical implementation of the theory of imprecise probabilities that represents verified computation of probabilities and distributions.

Keywords

probability bounds analysis probability box p-box verified computation imprecise probabilities interval analysis probabilistic arithmetic 

References

  1. 1.
    Baase, S.: A Gift of Fire. Pearson Prentice Hall (2008)Google Scholar
  2. 2.
    Bardi, J.S.: The Fifth Postulate: How Unraveling a Two-thousand-year-old Mystery Unraveled the Universe. John Wiley & Sons, Hoboken (2009)Google Scholar
  3. 3.
    Beer, M.: Fuzzy probability theory. In: Meyers, R. (ed.) Encyclopedia of Complexity and System Science, vol. 6, pp. 4047–4059. Springer, New York (2009)Google Scholar
  4. 4.
    Ben-Haim, Y.: Information Gap Decision Theory: Decisions under Severe Uncertainty. Academic Press, San Diego (2001)MATHGoogle Scholar
  5. 5.
    Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (1985)MATHGoogle Scholar
  6. 6.
    Berleant, D.: Automatically verified reasoning with both intervals and probability density functions. Interval Computations (2), 48–70 (1993)Google Scholar
  7. 7.
    Berleant, D.: Automatically verified arithmetic on probability distributions and intervals. In: Kearfott, B., Kreinovich, V. (eds.) Applications of Interval Computations, pp. 227–244. Kluwer Academic Publishers, Dordrecht (1996)CrossRefGoogle Scholar
  8. 8.
    Berleant, D., Goodman-Strauss, C.: Bounding the results of arithmetic operations on random variables of unknown dependency using intervals. Reliable Computing 4, 147–165 (1998)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Berleant, D., Zhang, J.: Representation and problem solving with distribution envelope determination (DEnv). Reliability Engineering and System Safety 85, 153–168 (2004)CrossRefGoogle Scholar
  10. 10.
    Boole, G.: An Investigation of the Laws of Thought, On Which Are Founded the Mathematical Theories of Logic and Probability. Walton and Maberly, London (1854)Google Scholar
  11. 11.
    Boyle, P.P.: Options: a Monte Carlo approach. Journal of Financial Economics 4, 323–338 (1977)CrossRefGoogle Scholar
  12. 12.
    Bukowski, J., Korn, L., Wartenberg, D.: Correlated inputs in quantitative risk assessment: the effects of distributional shape. Risk Analysis 15, 215–219 (1995)CrossRefGoogle Scholar
  13. 13.
    Burgman, M., Ferson, S., Akçakaya, H.R.: Risk Assessment in Conservation Biology. Chapman & Hall, London (1993)Google Scholar
  14. 14.
    Burmaster, D.E., Harris, R.H.: The magnitude of compounding conservatisms in superfund risk assessments. Risk Analysis 13, 131–134 (1993)CrossRefGoogle Scholar
  15. 15.
    CFTC/SEC (U.S. Commodity Futures Trading Commission/U.S. Securities and Exchange Commission): Findings Regarding the Market Events of May 6, 2010: Report of the Staffs of the CFTC and SEC to the Joint Advisory Committee on Emerging Regulatory Issues (2010), http://www.sec.gov/news/studies/2010/marketevents-report.pdf
  16. 16.
    Chebyshev [Tchebichef], P.: Sur les valeurs limites des intégrales. Journal de Mathématiques Pures et Appliquées. Ser. 2 19, 157–160 (1874)Google Scholar
  17. 17.
    Colyvan, M.: The philosophical significance of Cox’s theorem. International Journal of Approximate Reasoning 37, 71–85 (2004)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Cooper, J.A.: Fuzzy algebra uncertainty analysis for abnormal environment safety assessment. Journal of Intelligent and Fuzzy Systems 2, 337–345 (1994)Google Scholar
  19. 19.
    Cox, R.T.: Probability, frequency and reasonable expectation. American Journal of Physics 14, 1–13 (1946)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    de Finetti, B.: Theory of Probability. Wiley, New York (1974)MATHGoogle Scholar
  21. 21.
    Elliott, G.: US nuclear weapon safety and control. MIT Program in Science, Technology, and Society (2005), http://web.mit.edu/gelliott/Public/sts.072/paper.pdf
  22. 22.
    Enszer, J.A., Lin, Y., Ferson, S., Corliss, G.F., Stadtherr, M.A.: Probability bounds analysis for nonlinear dynamic process models. AIChE Journal 57, 404–422 (2011)CrossRefGoogle Scholar
  23. 23.
    EPA (U.S. Environmental Protections Agency (Region I)): Human Health Risk Assessment (2005a), http://www.epa.gov/region1/ge/thesite/restofriver-reports.html#HHRA
  24. 24.
    EPA (U.S. Environmental Protections Agency (Region I)): Ecological Risk Assessment (2005b), http://www.epa.gov/region1/ge/thesite/restofriver-reports.html#ERA
  25. 25.
    EPA (U.S. Environmental Protections Agency (Region 6 Superfund Program)): Calcasieu Estuary Remedial Investigation (2006), http://www.epa.gov/region6/6sf/louisiana/calcasieu/la_calcasieu_calcri.html
  26. 26.
    ESA (European Space Agency): Ariane 5 Flight 501 Failure. Report by the Inquiry Board, Paris (1996), http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
  27. 27.
    Ferson, S.: RAMAS Risk Calc 4.0 Software: Risk Assessment with Uncertain Numbers. Lewis Publishers, Boca Raton (2002)Google Scholar
  28. 28.
    Ferson, S., Burgman, M. (eds.): Quantitative Methods for Conservation Biology. Springer, New York (2000)Google Scholar
  29. 29.
    Ferson, S., Tucker, W.T.: Probability boxes as info-gap models. In: Proceedings of the North American Fuzzy Information Processing Society. IEEE, New York City (2008)Google Scholar
  30. 30.
    Ferson, S., Kreinovich, V., Ginzburg, L., Sentz, K., Myers, D.S.: Constructing probability boxes and Dempster–Shafer structures. Sandia National Laboratories, SAND2002-4015, Albuquerque, New Mexico (2003), http://www.ramas.com/unabridged.zip
  31. 31.
    Ferson, S., Nelsen, R., Hajagos, J., Berleant, D., Zhang, J., Tucker, W.T., Ginzburg, L., Oberkampf, W.L.: Dependence in Probabilistic Modeling, Dempster–Shafer Theory, and Probability Bounds Analysis. Sandia National Laboratories, SAND2004-3072, Albuquerque, New Mexico (2004), www.ramas.com/depend.pdf
  32. 32.
    Ferson, S., Mickley, J., McGill, W.: Uncertainty arithmetic on Excel spreadsheets: add-in for intervals, probability distributions and probability boxes. In: Vulnerability, Uncertainty, and Risk: Analysis, Modeling, and Management, Proceedings of the ICVRAM 2011 and ISUMA 2011 Conferences. ASCE, Reston (2011)Google Scholar
  33. 33.
    Fishburn, P.C.: The axioms of subjective probability. Statistical Science 1, 335–358 (1986)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Frank, M.J., Nelsen, R.B., Schweizer, B.: Best-possible bounds for the distribution of a sum—a problem of Kolmogorov. Probability Theory and Related Fields 74, 199–211 (1987)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Fréchet, M.: Généralisations du théorème des probabilités totales. Fundamenta Mathematica 25, 379–387 (1935)Google Scholar
  36. 36.
    Fréchet, M.: Sur les tableaux de corrélation dont les marges sont données. Annales de l’Université de Lyon. Section A: Sciences Mathématiques et Astronomie 9, 53–77 (1951)Google Scholar
  37. 37.
    GAO (General Accounting Office): Patriot Missile Defense: Software Problem Led to System Failure at Dhahran, Saudi Arabia. GAO/IMTEC-92-26 (1992), http://www.fas.org/spp/starwars/gao/im92026.htm
  38. 38.
    Grove, A.J., Halpern, J.Y.: Updating sets of probabilities. In: Proceedings of the Fourteenth Conference on Uncertainty in AI, pp. 173–182 (1998), http://arxiv.org/abs/0906.4332
  39. 39.
    Hailperin, T.: Boole’s Logic and Probability. North-Holland, Amsterdam (1986)MATHGoogle Scholar
  40. 40.
    Halpern, J.Y.: Cox’s theorem revisited. Journal of AI Research 11, 429–435 (1999)MATHGoogle Scholar
  41. 41.
    Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox for Verified Computing I: Basic Numerical Problems. Springer, Heidelberg (1997)Google Scholar
  42. 42.
    Hertz, D.B.: Risk analysis in capital investment. Harvard Business Review 42, 95–106 (1964)Google Scholar
  43. 43.
    Hickman, J.W., et al.: PRA Procedures Guide: A Guide to the Performance of Probabilistic Risk Assessments for Nuclear Power Plants, vol. 2, NUREG/CR-2300-V1 and -V2. National Technical Information Service, Washington (1983)Google Scholar
  44. 44.
    Isbell, D., Hardin, M., Underwood, J.: Mars Climate Orbiter team finds likely cause of loss (1999), http://mars.jpl.nasa.gov/msp98/news/mco990930.html
  45. 45.
    Jeffreys, H.: Scientific Inference. Cambridge University Press, Cambridge (1931)Google Scholar
  46. 46.
    Kaufmann, A., Gupta, M.M.: Introduction to Fuzzy Arithmetic: Theory and Applications. Van Nostrand Reinhold Company, New York (1991)MATHGoogle Scholar
  47. 47.
    Keynes, J.M.: A Treatise on Probability. Macmillan, New York (1921), http://www.archive.org/details/treatiseonprobab007528mbp MATHGoogle Scholar
  48. 48.
    Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Julius Springer, Berlin (1933); Translated into English as Kolmogorov, A.N.: Foundations of the Theory of Probability. Chelsea Publishing, New York (1950)Google Scholar
  49. 49.
    Kriegler, E., Held, H.: Utilizing belief functions for the estimation of future climate change. International Journal of Approximate Reasoning 39, 185–209 (2005)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Kulisch, U., Hammer, R., Ratz, D., Hocks, M.: Numerical Toolbox for Verified Computing I: Basic Numerical Problems: Theory, Algorithms, and Pascal-XSC Programs. Computational Mathematics, vol. 21. Springer, Heidelberg (1993)MATHGoogle Scholar
  51. 51.
    Kyburg, Jr., H.E.: Interval valued probabilities. SIPTA Documention on Imprecise Probability (1999), http://www.sipta.org/documentation/interval_prob/kyburg.pdf
  52. 52.
    Marquis de Laplace, P.S.: Théorie analytique de probabilités, (edition troisième). Courcier, Paris (1820); The introduction (Essai philosophique sur les probabilités) is available in an English translation in A Philosophical Essay on Probabilities. Dover Publications, New York (1951)Google Scholar
  53. 53.
    Lavine, M.: Sensitivity in Bayesian statistics: the prior and the likelihood. Journal of the American Statistical Association 86, 396–399 (1991)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Lindley, D.V.: Scoring rules and the inevitability of probability. International Statistical Review 50, 1–26 (1982)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Lindley, D.V.: Understanding Uncertainty. John Wiley & Sons, Hoboken (2006)MATHCrossRefGoogle Scholar
  56. 56.
    Luce, R.D.: Where does subjective expected utility fail descriptively? Journal of Risk and Uncertainty 5, 5–27 (1992)MATHGoogle Scholar
  57. 57.
    Makarov, G.: Estimates for the distribution function of a sum of two random variables when the marginal distributions are fixed. Theory of Probability and its Applications 26, 803–806 (1981)CrossRefGoogle Scholar
  58. 58.
    Markov [Markoff], A.: Sur une question de maximum et de minimum proposée par M. Tchebycheff. Acta Mathematica 9, 57–70 (1886)CrossRefGoogle Scholar
  59. 59.
    McKone, T.E., Ryan, P.B.: Human exposures to chemicals through food chains: an uncertainty analysis. Environmental Science and Technology 23, 1154–1163 (1989)CrossRefGoogle Scholar
  60. 60.
    Möller, B., Beer, M.: Fuzzy Randomness—Uncertainty in Civil Engineering and Computational Mechanics. Springer, Berlin (2004)MATHGoogle Scholar
  61. 61.
    Moore, R.E.: Interval analysis. Prentice Hall, Englewood Cliffs (1966)MATHGoogle Scholar
  62. 62.
    Neapolitan, R.E.: A survey of uncertain and approximate inference. In: Zadeh, L., Kacprzyk, J. (eds.) Fuzzy Logic for the Management of Uncertainty, pp. 55–82. John Wiley & Sons, New York (1992)Google Scholar
  63. 63.
    Nelsen, R.B.: An Introduction to Copulas. Lecture Notes in Statistics, vol. 139. Springer, New York (1999)MATHGoogle Scholar
  64. 64.
    Nong, A., Krishnan, K.: Estimation of interindividual pharmacokinetic variability factor for inhaled volatile organic chemicals using a probability-bounds approach. Regulatory Toxicology and Pharmacology 48, 93–101 (2007)CrossRefGoogle Scholar
  65. 65.
    Oberguggenberger, M., King, J., Schmelzer, B.: Imprecise probability methods for sensitivity analysis in engineering. In: Proceedings of the 5th International Symposium on Imprecise Probability: Theories and Applications, Prague, Czech Republic (2007), http://www.sipta.org/isipta07/proceedings/papers/s032.pdf
  66. 66.
    Popova, E.D.: Mathematica Connectivity to Interval Libraries filib++ and C-XSC. In: Cuyt, A., Krämer, W., Luther, W., Markstein, P. (eds.) Numerical Validation in Current Hardware Architectures. LNCS, vol. 5492, pp. 117–132. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  67. 67.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2010), http://www.R-project.org
  68. 68.
    Seidenfeld, T.: Decision theory without “independence” or without “ordering”: what is the difference? Economics and Philosophy 4, 267–290 (1988)CrossRefGoogle Scholar
  69. 69.
    Seidenfeld, T., Wasserman, L.: Dilation for sets of probabilities. The Annals of Statistics 21, 1139–1154 (1993)MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Selby, R.G., Vecchio, F.J., Collins, M.P.: The failure of an offshore platform. Concrete International 19, 28–35 (1997)Google Scholar
  71. 71.
    Slabodkin, G.: Smart ship inquiry a go. Government Computer News (August 31, 1998), http://gcn.com/articles/1998/08/31/smart-ship-inquiry-a-go.aspx
  72. 72.
    Smith, A.E., Ryan, P.B., Evans, J.S.: The effect of neglecting correlations when propagating uncertainty and estimating the population of risk. Risk Analysis 12, 467–474 (1992)CrossRefGoogle Scholar
  73. 73.
    Suter II, G.W.: Ecological Risk Assessment. Lewis Publishers, Boca Raton (1993)Google Scholar
  74. 74.
    Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press, Princeton (2011)MATHGoogle Scholar
  75. 75.
    Tuyl, F., Gerlachy, R., Mengersen, K.: Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters. Bayesian Analysis 4, 151–158 (2009)MathSciNetCrossRefGoogle Scholar
  76. 76.
    Vick, S.G.: Degrees of Belief: Subjective Probability and Engineering Judgment. American Society of Civil Engineers, Reston (2002)Google Scholar
  77. 77.
    Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)MATHGoogle Scholar
  78. 78.
    Walley, P.: Inferences from multinomial data: learning about a bag of marbles. Journal of the Royal Statistical Society, Series B 58, 3–57 (1996)MathSciNetMATHGoogle Scholar
  79. 79.
    Walley, P., Gurrin, L., Barton, P.: Analysis of clinical data using imprecise prior probabilities. The Statistician 45, 457–485 (1996)CrossRefGoogle Scholar
  80. 80.
    Williamson, R.C., Downs, T.: Probabilistic arithmetic I: numerical methods for calculating convolutions and dependency bounds. International Journal of Approximate Reasoning 4, 89–158 (1990)MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Yager, R.R.: Arithmetic and other operations on Dempster–Shafer structures. International Journal of Man-Machine Studies 25, 357–366 (1986)MathSciNetCrossRefGoogle Scholar
  82. 82.
    Zhang, H., Mullen, R.L., Muhanna, R.L.: Finite element structural analysis using imprecise probabilities based on p-box representation. In: Beer, M., Muhanna, R.L., Mullen, R.L. (eds.) Proceedings of the 4th International Workshop on Reliable Engineering Computing: Robust Design—Coping with Hazards, Risk and Uncertainty, Singapore, March 3-5. Research Publishing (2010), http://rpsonline.com.sg/rpsweb/9789810851187.html, http://www.eng.nus.edu.sg/civil/REC2010/documents/papers/013.pdf
  83. 83.
    Zhang, H., Mullen, R., Muhanna, R.: Safety structural analysis with probability-boxes. International Journal of Reliability and Safety 6, 110–129 (2012)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Scott Ferson
    • 1
  • Jack Siegrist
    • 1
  1. 1.Applied BiomathematicsUSA

Personalised recommendations