Advertisement

Antioxidant Defenses Against Drought Stress

  • Iker Hernández
  • Jana Cela
  • Leonor Alegre
  • Sergi Munné-BoschEmail author
Chapter

Abstract

Plants possess a battery of structural, physiological, biochemical, and molecular mechanisms to withstand drought periods. During drought, stomatal limitation of photosynthesis, overreduction of the photosynthetic electron transport chain, enhanced photorespiration, and many other processes may result on enhanced formation of reactive oxygen species (ROS) and other oxidizing agents. One of the most important defense mechanisms against drought is the antioxidant system, which detoxifies prooxidants such as ROS and lipid peroxyl radicals, and keeps an adequate cellular redox balance. Antioxidants may be classified in enzymatic (e.g., ascorbate peroxidases, catalases, and superoxide dismutases) or nonenzymatic (syn. low molecular weight) antioxidants (e.g., ascorbate, glutathione, carotenoids, and tocopherols). Antioxidants may scavenge ROS directly or in co-operation with other antioxidants. This co-operation between antioxidants also allows re-cycling of oxidized antioxidants. Moreover, antioxidants are key sensors of the cellular redox status, so they trigger a number of signaling events intended to keep an adequate cellular redox balance. In this chapter, the function of the most important antioxidants in plants and the role of antioxidants in cellular redox homeostasis during drought stress will be reviewed.

Keywords

Reactive Oxygen Species Drought Stress Reactive Oxygen Species Level Late Embryogenesis Abundant Sulfinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

APx

Ascorbate peroxidase

CAT

Catalase

DHA

Dehydroascorbate

DHAR

DHA reductase

Fdred

Reduced ferredoxin

FTR

Ferredoxin-thioredoxin reductase

GRx

Glutaredoxin

GSH

Reduced glutathione

GSSG

GSH disulfide (oxidized GSH)

GST

GSH-S-transferase

MDHA

Monodehydroascorbate

MDHAR

MDHA reductase

NPQ

Non-photochemical quenching

NTR

NADPH-thioredoxin reductase

PRx

Peroxiredoxin

PSI/II

Photosystem I or II

ROS

Reactive oxygen species

qE

ΔpH-dependent NPQ

SOD

Superoxide dismutase

TRx

Thioredoxin

References

  1. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341PubMedCrossRefGoogle Scholar
  2. Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639PubMedCrossRefGoogle Scholar
  3. Atkin OK, Macherel D (2009) The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot 103:581–597PubMedCrossRefGoogle Scholar
  4. Baier M, Dietz KJ (1999) Protective function of chloroplast 2- cysteine peroxiredoxin in photosynthesis. Evidence from transgenic Arabidopsis. Plant Physiol 119:1407–1414PubMedCrossRefGoogle Scholar
  5. Baier M, Noctor G, Foyer CH, Dietz KJ (2000) Antisense suppression of 2-cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. Plant Physiol 124:823–832PubMedCrossRefGoogle Scholar
  6. Barceló AR, Pomar F, Ferrer MA, Martínez P, Ballesta MC, Pedreño MA (2002) In situ characterization of a NO-sensitive peroxidase in the lignifying xylem of Zinnia elegans. Physiol Plant 114:33–40PubMedCrossRefGoogle Scholar
  7. Bartoli CG, Gómez F, Martínez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot 55:1663–1669PubMedCrossRefGoogle Scholar
  8. Begcy K, Mariano ED, Mattiello L, Nunes AV, Mazzafera P, Maia IG, Menossi M (2011) An Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants. PLoS ONE 6:e23776PubMedCrossRefGoogle Scholar
  9. Bickar D, Bonaventura J, Bonaventura C (1982) Cytochrome c oxidase binding of hydrogen peroxide. Biochemistry 21:2661–2666PubMedCrossRefGoogle Scholar
  10. Broin M, Cuiné S, Eymery F, Rey P (2002) The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage. Plant Cell 14:1417–1432PubMedCrossRefGoogle Scholar
  11. Broin M, Rey P (2003) Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS1 2-cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress. Plant Physiol 132:1335–1343PubMedCrossRefGoogle Scholar
  12. Burton GW, Ingold KU (1984) β-Carotene: an unusual type of lipid antioxidant. Science 224:569–573PubMedCrossRefGoogle Scholar
  13. Caliskan M, Cuming AC (1998) Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination. Plant J 15:165–171PubMedCrossRefGoogle Scholar
  14. Carpena X, Soriano M, Klotz MG, Duckworth HW, Donald LJ, Melik-Adamyan W, Fita I, Loewen PC (2003) Structure of the Clade 1 catalase, CatF of Pseudomonas syringae, at 1.8 Å resolution. Proteins 50:423–436PubMedCrossRefGoogle Scholar
  15. Cazzaniga S, Li Z, Niyogi KK, Bassi R, Dall'Osto L (2012) The Arabidopsis sz/1 mutant reveals a critical role of β-carotene in photosystem I photoprotection. Plant Physiol 159:1745–1758PubMedCrossRefGoogle Scholar
  16. Cela J, Chang C, Munné-Bosch S (2011) Accumulation of γ- rather than α-tocopherol alters ethylene signaling gene expression in the vte4 mutant of Arabidopsis thaliana. Plant Cell Physiol 52:1389–1400PubMedCrossRefGoogle Scholar
  17. Cochard H, Froux F, Mayr S, Coutand C (2004) Xylem wall collapse in water-stressed pine needles. Plant Physiol 134:401–408PubMedCrossRefGoogle Scholar
  18. Conn PF, Lambert C, Land EJ, Schalch W, Truscott TG (1992) Carotene–oxygen radical interactions. Free Radic Res Commun 16:401–408PubMedCrossRefGoogle Scholar
  19. Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species. Production, scavenging and signaling. Plant Signal Behav 3:156–165PubMedCrossRefGoogle Scholar
  20. Cruz de Carvalho MH, Contour-Ansel D (2008) (h)GR, beans and drought stress. Plant Signal Behav 3:834–835PubMedCrossRefGoogle Scholar
  21. Dai S, Schwendtmayer C, Schürmann P, Ramaswamy S, Eklund H (2000) Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster. Science 287:655–658PubMedCrossRefGoogle Scholar
  22. Dalton DA, Baird LM, Langeberg L, Taugher CY, Anyan WR, Vance CP, Sarath G (1993) Subcellular localization of oxygen defense enzymes in soybean (Glycine max [L.] Merr.) root nodules. Plant Physiol 102:481–489PubMedGoogle Scholar
  23. Davison PA, Hunter CN, Horton P (2002) Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206PubMedCrossRefGoogle Scholar
  24. Demmig-Adams B, Gilmore AM, Adams WW III (1996) In vivo functions of carotenoids in higher plants. FASEB J 10:403–412PubMedGoogle Scholar
  25. Dietz KJ, Horling F, König J, Baier M (2002) The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot 53:1321–1329PubMedCrossRefGoogle Scholar
  26. Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57:1697–1709PubMedCrossRefGoogle Scholar
  27. Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277:30859–30869PubMedCrossRefGoogle Scholar
  28. Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60:1207–1218PubMedCrossRefGoogle Scholar
  29. Duan ZQ, Bai L, Zhao ZG, Zhang GP, Cheng FM, Jiang LX, Chen KM (2009) Drought-stimulated activity of plasma membrane nicotinamide adenine dinucleotide phosphate oxidase and its catalytic properties in rice. J Integr Plant Biol 51:1104–1115PubMedCrossRefGoogle Scholar
  30. Esteban R, Becerril JM, García-Plazaola JI (2009) Lutein epoxide cycle, more than just a forest tale. Plant Signal Behav 4:342–344PubMedCrossRefGoogle Scholar
  31. Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernández JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613PubMedCrossRefGoogle Scholar
  32. Feierabend J (2005) Catalases in plants: molecular and functional properties and role in stress defence. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 101–140Google Scholar
  33. Feng Y, Shong N, Rouhier N, Hase T, Kusunoki N, Jacquot JP, Jin C, Xia B (2006) Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site. Biochemistry 45:7998–8008PubMedCrossRefGoogle Scholar
  34. Fonseca S, Chico JM, Solano R (2009) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547PubMedCrossRefGoogle Scholar
  35. Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446PubMedCrossRefGoogle Scholar
  36. Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364CrossRefGoogle Scholar
  37. Fukuzawa K, Gebicki JM (1983) Oxidation of α-tocopherol in micelles and liposomes by the hydroxyl, perhydroxyl and superoxide free radicals. Arch Biochem Biophys 226:242–251PubMedCrossRefGoogle Scholar
  38. Fulda S, Mikkat S, Stegmann H, Horn R (2011) Physiology and proteomics of drought stress acclimation in sunflower (Helianthus annuus L.). Plant Biol 13:632–642PubMedCrossRefGoogle Scholar
  39. Galle A, Csiszar J, Secenji M, Guoth A, Cseuz L, Tari I (2009) Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: Response to water deficit. J Plant Physiol 166:1878–1891PubMedCrossRefGoogle Scholar
  40. George S, Venkataraman G, Parida A (2010) A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol 167:311–318PubMedCrossRefGoogle Scholar
  41. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefGoogle Scholar
  42. Giraud E, Ho LH, Clifton R, Carroll A, Estavillo G, Tan YF, Howell KA, Ivanova A, Pogson BJ, Millar AH, Whelan J (2008) The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147:595–610PubMedCrossRefGoogle Scholar
  43. Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol 26:139–145PubMedCrossRefGoogle Scholar
  44. Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloch KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461CrossRefGoogle Scholar
  45. Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298PubMedGoogle Scholar
  46. Haslekås C, Grini PE, Nordgard SH, Thorstensen T, Viken MK, Nygaard V, Aalen RB (2003) ABI3 mediates expression of the peroxiredoxin antioxidant AtPER1 gene and induction by oxidative stress. Plant Mol Biol 53:313–326PubMedCrossRefGoogle Scholar
  47. Havaux M, Kloppstech K (2001) The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213:953–966CrossRefGoogle Scholar
  48. Herbette S, Lenne C, Leblanc N, Julien JL, Drevet JR, Roeckel-Drevet P (2002) Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur J Biochem 269:2414–2420PubMedCrossRefGoogle Scholar
  49. Hernández JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F (2001) Antioxidant systems and O2.− H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831PubMedCrossRefGoogle Scholar
  50. Hernández I, Alegre L, Munné-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311PubMedCrossRefGoogle Scholar
  51. Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132PubMedCrossRefGoogle Scholar
  52. Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrante. Trends Plant Sci 5:263–267PubMedCrossRefGoogle Scholar
  53. Ishikawa T, Yoshimura K, Tamoi M, Tamoi M, Takeda T, Shigeoka S (1997) Alternative mRNA splicing of 3’-terminal exons generates ascorbate peroxidase isoenzymes in spinach (Spinacia oleracea) chloroplasts. Biochem J 328:795–800PubMedGoogle Scholar
  54. Ito H, Iwabuchi M, Ogawa K (2003) The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol 44:655–660PubMedCrossRefGoogle Scholar
  55. Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193PubMedCrossRefGoogle Scholar
  56. Jha B, Sharma A, Mishra A (2011) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep 38:4823–4832PubMedCrossRefGoogle Scholar
  57. Ji W, Zhu Y, Li Y, Yang LA, Zhao XW, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32:1173–1179PubMedCrossRefGoogle Scholar
  58. Jiménez A, Hernández A, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in peroxisomes of pea leaves. Plant Physiol 114:275–284PubMedGoogle Scholar
  59. Johnson MP, Havaux M, Triantaphylidés C (2007) Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of Arabidopsis to photooxidative stress by a lipid-protective, antioxidant mechanism. J Biol Chem 282:22605–22618PubMedCrossRefGoogle Scholar
  60. Jubany-Marí T, Munné-Bosch S, Alegre L (2010) Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate. Plant Physiol Biochem 48:351–458PubMedCrossRefGoogle Scholar
  61. Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol 49:1272–1282PubMedCrossRefGoogle Scholar
  62. Keilin D, Hartreef EF (1950) Reaction of methaemoglobin with hydrogen peroxide. Nature 166:513–514PubMedCrossRefGoogle Scholar
  63. Keilin D, Hartreef EF (1955) Catalase, peroxidase and metmyoglobin as catalysts of coupled peroxidatic reactions. Biochem J 60:310–325PubMedGoogle Scholar
  64. Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266PubMedGoogle Scholar
  65. Klotz MG, Loewen PC (2003) The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and from bacteria into eukaryota. Mol Biol Evol 20:1098–1112PubMedCrossRefGoogle Scholar
  66. Lee KO, Lee JR, Yoo JY, Jang HH, Moon JC, Jung BG, Chi YH, Park SK, Lee SS, Lim CO, Yun DJ, Cho MJ, Lee SY (2002) GSH-dependent peroxidase activity of the rice (Oryza sativa) glutaredoxin, a thioltransferase. Biochem Biophys Res Commun 296:1152–1156PubMedCrossRefGoogle Scholar
  67. Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1628–1638CrossRefGoogle Scholar
  68. Lewis DFV (2002) Oxidative stress: the role of cytochromes P450 in oxygen activation. J Chem Technol Biotechnol 77:1095–1100CrossRefGoogle Scholar
  69. Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217:658–667PubMedCrossRefGoogle Scholar
  70. Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z, Jin Z, Chen S, Liu G (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett 30:1275–1280PubMedCrossRefGoogle Scholar
  71. Liu HP, Liu J, Zhang YY, Liu YL (2004) Relationship between ATPase activity and conjugated polyamines in mitochondrial membrane from wheat seedling roots under osmotic stress. J Environ Sci 16:712–716Google Scholar
  72. Llorente F, López-Cobollo RM, Catalá R, Martínez-Zapater JM, Salinas J (2002) A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J 32:13–24PubMedCrossRefGoogle Scholar
  73. López-Carbonell M, Munné-Bosch S, Alegre L (2006) The ascorbate-deficient vtc-1 Arabidopsis mutant shows altered ABA accumulation in leaves and chloroplasts. J Plant Growth Regul 25:137–144CrossRefGoogle Scholar
  74. Maiorino M, Ursini F, Bosello V, Toppo S, Tosatto SC, Mauri P, Becker K, Roveri A, Bulato C, Benazzi L, De Palma A, Flohé L (2007) The thioredoxin specificity of Drosophila GPx: a paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases. J Mol Biol 365:1033–1046PubMedCrossRefGoogle Scholar
  75. Mano S, Yamaguchi K, Hayashi M, Nishimura M (1997) Stromal and thylakoid-bound ascorbate peroxidases are produced by alternative splicing in pumpkin. FEBS Lett 413:21–22PubMedCrossRefGoogle Scholar
  76. Marjamaa K, Kukkola EM, Fagerstedt KV (2009) The role of xylem class III peroxidases in lignification. J Exp Bot 60:367–376PubMedCrossRefGoogle Scholar
  77. Markesbery WR, Lovell MA (2006) DNA oxidation in Alzheimer’s disease. Antiox Redox Signal 8:2039–2045CrossRefGoogle Scholar
  78. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymatic function for erythrocuperin (hemecuperin). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  79. Meyer AJ (2008) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390–1403PubMedCrossRefGoogle Scholar
  80. Meyer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86:435–457PubMedCrossRefGoogle Scholar
  81. Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766PubMedCrossRefGoogle Scholar
  82. Michelet L, Zaffagnini M, Vanacker H, Le Maréchal P, Marchand C, Schroda M, Lemaire SD, Decottignies P (2008) In vivo targets of S-thiolation in Chlamydomonas reinhardtii. J Biol Chem 283:21571–21578PubMedCrossRefGoogle Scholar
  83. Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol 62:79–104PubMedCrossRefGoogle Scholar
  84. Mittler R, Poulos TL (2005) Ascorbate peroxidase. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 87–100Google Scholar
  85. Mohr S, Hallak H, de Boitte A, Lapetina EG, Brüne B (1999) Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 274:9427–94230PubMedCrossRefGoogle Scholar
  86. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481PubMedCrossRefGoogle Scholar
  87. Møller SG, McPherson MJ (1998) Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encoding an H2O2-generating diamine oxidase. Plant J 13:781–791PubMedCrossRefGoogle Scholar
  88. Montrichard F, Alkhalfioui F, Yano H, Vensel WH, Hurkman WJ, Buchanan BB (2009) Thioredoxin targets in plants: the first 30 years. J Proteomics 72:452–474PubMedCrossRefGoogle Scholar
  89. Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724PubMedCrossRefGoogle Scholar
  90. Mowla SB, Thomson JA, Farrant JM, Mundree SG (2002) A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker. Planta 215:716–726PubMedCrossRefGoogle Scholar
  91. Munemasa S, Mori IC, Murata Y (2011) Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signal Behav 6:939–941PubMedCrossRefGoogle Scholar
  92. Munné-Bosch S, Alegre L (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210:925–931PubMedCrossRefGoogle Scholar
  93. Munné-Bosch S, Alegre L (2003) Drought-induced changes in the redox state of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiol 131:1816–1825PubMedCrossRefGoogle Scholar
  94. Munné-Bosch S, Weiler EW, Alegre L, Müller M, Düchting P, Falk J (2007) α-Tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta 225:681–691PubMedCrossRefGoogle Scholar
  95. Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379PubMedCrossRefGoogle Scholar
  96. Nicholls P, Fita I, Loewen P (2001) Enzymology and structure of catalases. Adv Inorg Chem 51:51–106CrossRefGoogle Scholar
  97. Nishikimi M, Yamada H, Yagi K (1980) Oxidation by superoxide of tocopherols dispersed in aqueous media with deoxycholate. Biochim Biophys Acta 627:101–108PubMedCrossRefGoogle Scholar
  98. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279PubMedCrossRefGoogle Scholar
  99. Paco L, Galarneau A, Drone J, Fajula F, Bailly C, Pulvin S, Thomas D (2009) Catalase-like activity of bovine met-hemoglobin: interaction with the pseudo-catalytic peroxidation of anthracene traces in aqueous medium. Biotechnol J 4:1460–1470PubMedCrossRefGoogle Scholar
  100. Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951PubMedCrossRefGoogle Scholar
  101. Pastori GM, Trippi VS (1992) Oxidative stress induces high-rate if glutathione reductase synthesis in a drought-resistant maize strain. Plant Cell Physiol 33:957–961Google Scholar
  102. Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734PubMedCrossRefGoogle Scholar
  103. Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E (1993) Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu/Zn superoxide dismutases. Theor Appl Genet 85:568–576CrossRefGoogle Scholar
  104. Pogson BJ, Rissler HM (2000) Genetic manipulation of carotenoid biosynthesis and photoprotection. Philos Trans R Soc London 355:1395–1403CrossRefGoogle Scholar
  105. Polle A (2001) Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462PubMedCrossRefGoogle Scholar
  106. Ramel F, Birtic S, Cuiné S, Triantaphylidès C, Ravanat JL, Havaux M (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158:1267–1278PubMedCrossRefGoogle Scholar
  107. Raven JA (1987) The evolution of vascular land plants in relation to supracellular transport processes. Adv Bot Res 87:1287–1299Google Scholar
  108. Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J 276:4666–4681PubMedCrossRefGoogle Scholar
  109. Rey P, Cuiné S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M (2005) Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses. Plant J 41:31–42PubMedCrossRefGoogle Scholar
  110. Rey P, Pruvot G, Becuwe N, Eymery F, Rumeau D, Peltier G (1998) A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L. plants. Plant J 13:97–107PubMedCrossRefGoogle Scholar
  111. Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59:3781–3801PubMedCrossRefGoogle Scholar
  112. Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inzé D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32:329–342PubMedCrossRefGoogle Scholar
  113. Roldán-Arjona T, Ariza RR (2009) Repair and tolerance of oxidative DNA damage in plants. Mutat Res 681:169–179PubMedCrossRefGoogle Scholar
  114. Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, de Faÿ E, Meyer Y, Jacquot JP (2001) Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiol 127:1299–1309PubMedCrossRefGoogle Scholar
  115. Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins anf glutathionylation. Annu Rev Plant Biol 59:143–166PubMedCrossRefGoogle Scholar
  116. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145PubMedCrossRefGoogle Scholar
  117. Sandalio LM, Palma JM, del Río LA (1987) Localization of manganese superoxide-dismutase in peroxisomes isolated from Pisum sativum (L). Plant Sci 51:1–8CrossRefGoogle Scholar
  118. Sattler SE, Mène-Saffrané L, Farmer EE, Krischke M, Mueller MJ, DellaPenna D (2006) Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. Plant Cell 18:3706–3720PubMedCrossRefGoogle Scholar
  119. Shikanai T, Takeda T, Yamauchi H, Sano S, Tomizawa KI, Yokota A, Shigeoka S (1998) Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett 428:47–51PubMedCrossRefGoogle Scholar
  120. Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 53–86CrossRefGoogle Scholar
  121. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63PubMedCrossRefGoogle Scholar
  122. Spoel SH, Loake GJ (2011) Redox-based protein modifications: the missing link in plant immune signaling. Curr Opin Plant Biol 14:358–364PubMedCrossRefGoogle Scholar
  123. Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258PubMedCrossRefGoogle Scholar
  124. Stengel A, Benz JP, Soll J, Bölter B (2010) Redox-regulation of protein import into chloroplasts and mitochondria: similarities and differences. Plant Signal Behav 5:105–109PubMedCrossRefGoogle Scholar
  125. Suja G, Gayatri V, Ajay P (2010) A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol 167:311–318CrossRefGoogle Scholar
  126. Sun W, Kadima TA, Pickard MA, Dunford HB (1994) Catalase activity of chloroperoxidase and its interaction with peroxidase activity. Biochem Cell Biol 72:321–331PubMedCrossRefGoogle Scholar
  127. Sztajer H, Gamain B, Aumann KD, Slomianny C, Becker K, Brigelius-Flohé R, Flohé L (2001) The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem 276:7397–7403PubMedCrossRefGoogle Scholar
  128. Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JD (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J 14:365–370PubMedCrossRefGoogle Scholar
  129. Torres-Franklin ML, Contour-Ansel D, Zuily-Fodil Y, Pham-Thi AT (2007) Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. J Plant Physiol 165:514–521PubMedCrossRefGoogle Scholar
  130. Toumi I, Moschou PN, Paschalidis KA, Bouamama B, Ben Salem-Fnayou A, Ghorbel AW, Mliki A, Roubelakis-Angelakis KA (2010) Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J Plant Physiol 167:519–525PubMedCrossRefGoogle Scholar
  131. Van Camp W, Capiau K, Van Montagu M, Inzé D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112:1703–1714PubMedCrossRefGoogle Scholar
  132. Van Camp W, Willekens H, Bowler C, Van Montagu M, Inze D (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Bio/Technology 12:165–168CrossRefGoogle Scholar
  133. Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821PubMedCrossRefGoogle Scholar
  134. Vanderauwera S, Suzuki N, Miller G, van de Cotte B, Morsa S, Ravanat JL, Hegie A, Triantaphylidès C, Shulaev V, Van Montagu MC, Van Breusegem F, Mittler R (2011) Extranuclear protection of chromosomal DNA from oxidative stress. Proc Natl Acad Sci USA 108:1711–1716PubMedCrossRefGoogle Scholar
  135. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905PubMedCrossRefGoogle Scholar
  136. Vieira Dos Santos C, Cuiné S, Rouhier N, Rey P (2005) The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiol 138:909–922PubMedCrossRefGoogle Scholar
  137. Votyakova TV, Wallace HM, Dunbar B, Wilson SB (1999) The covalent attachment of polyamines to proteins in plant mitochondria. Eur J Biochem 260:250–257PubMedCrossRefGoogle Scholar
  138. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heatshock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Iker Hernández
    • 1
  • Jana Cela
    • 1
  • Leonor Alegre
    • 1
  • Sergi Munné-Bosch
    • 1
    Email author
  1. 1.Departament de Biologia Vegetal, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations